These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 19289447)

  • 1. Transcriptionally active gene fragments derived from potentially fast-evolving donor genes in the rice genome.
    Wang X; Yu Z; Yang X; Deng XW; Li L
    Bioinformatics; 2009 May; 25(10):1215-8. PubMed ID: 19289447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pack-MULE transposable elements mediate gene evolution in plants.
    Jiang N; Bao Z; Zhang X; Eddy SR; Wessler SR
    Nature; 2004 Sep; 431(7008):569-73. PubMed ID: 15457261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide transcription analyses in rice using tiling microarrays.
    Li L; Wang X; Stolc V; Li X; Zhang D; Su N; Tongprasit W; Li S; Cheng Z; Wang J; Deng XW
    Nat Genet; 2006 Jan; 38(1):124-9. PubMed ID: 16369532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transposition of the rice miniature inverted repeat transposable element mPing in Arabidopsis thaliana.
    Yang G; Zhang F; Hancock CN; Wessler SR
    Proc Natl Acad Sci U S A; 2007 Jun; 104(26):10962-7. PubMed ID: 17578919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid evolution in a pair of recent duplicate segments of rice.
    Jiang H; Liu D; Gu Z; Wang W
    J Exp Zool B Mol Dev Evol; 2007 Jan; 308(1):50-7. PubMed ID: 16838296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A genome-wide transcriptional activity survey of rice transposable element-related genes.
    Jiao Y; Deng XW
    Genome Biol; 2007; 8(2):R28. PubMed ID: 17326825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Birth and death of genes promoted by transposable elements in Oryza sativa.
    Sakai H; Tanaka T; Itoh T
    Gene; 2007 May; 392(1-2):59-63. PubMed ID: 17210233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a high frequency transposon induced by tissue culture, nDaiZ, a member of the hAT family in rice.
    Huang J; Zhang K; Shen Y; Huang Z; Li M; Tang D; Gu M; Cheng Z
    Genomics; 2009 Mar; 93(3):274-81. PubMed ID: 19071208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pack-MULEs: theft on a massive scale.
    Lisch D
    Bioessays; 2005 Apr; 27(4):353-5. PubMed ID: 15770680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transposable elements, gene creation and genome rearrangement in flowering plants.
    Bennetzen JL
    Curr Opin Genet Dev; 2005 Dec; 15(6):621-7. PubMed ID: 16219458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs).
    Jiang N; Feschotte C; Zhang X; Wessler SR
    Curr Opin Plant Biol; 2004 Apr; 7(2):115-9. PubMed ID: 15003209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary and expression study of the aldehyde dehydrogenase (ALDH) gene superfamily in rice (Oryza sativa).
    Gao C; Han B
    Gene; 2009 Feb; 431(1-2):86-94. PubMed ID: 19071198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptionally active transposable elements in recent hybrid sugarcane.
    de Araujo PG; Rossi M; de Jesus EM; Saccaro NL; Kajihara D; Massa R; de Felix JM; Drummond RD; Falco MC; Chabregas SM; Ulian EC; Menossi M; Van Sluys MA
    Plant J; 2005 Dec; 44(5):707-17. PubMed ID: 16297064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress-induced Rim2/Hipa pseudogene of rice exhibits alternative tailing and splicing during transcription.
    Shi XR; Li Q; He ZH
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Dec; 31(6):607-14. PubMed ID: 16361788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origins, genetic organization and transcription of a family of non-autonomous helitron elements in maize.
    Brunner S; Pea G; Rafalski A
    Plant J; 2005 Sep; 43(6):799-810. PubMed ID: 16146520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly asymmetric rice genomes.
    Ding J; Araki H; Wang Q; Zhang P; Yang S; Chen JQ; Tian D
    BMC Genomics; 2007 Jun; 8():154. PubMed ID: 17555605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The preferential retention of starch synthesis genes reveals the impact of whole-genome duplication on grass evolution.
    Wu Y; Zhu Z; Ma L; Chen M
    Mol Biol Evol; 2008 Jun; 25(6):1003-6. PubMed ID: 18296698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the genome expression trends in the heading-stage panicle of six rice lineages.
    Peng ZY; Zhang H; Liu T; Dzikiewicz KM; Li S; Wang X; Hu G; Zhu Z; Wei X; Zhu QH; Sun Z; Ge S; Ma L; Li L; Deng XW
    Genomics; 2009 Feb; 93(2):169-78. PubMed ID: 18996467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolutionary fate of MULE-mediated duplications of host gene fragments in rice.
    Juretic N; Hoen DR; Huynh ML; Harrison PM; Bureau TE
    Genome Res; 2005 Sep; 15(9):1292-7. PubMed ID: 16140995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Over-expression of the rice LRK1 gene improves quantitative yield components.
    Zha X; Luo X; Qian X; He G; Yang M; Li Y; Yang J
    Plant Biotechnol J; 2009 Sep; 7(7):611-20. PubMed ID: 19619185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.