BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 19289825)

  • 1. An adrenal beta-arrestin 1-mediated signaling pathway underlies angiotensin II-induced aldosterone production in vitro and in vivo.
    Lymperopoulos A; Rengo G; Zincarelli C; Kim J; Soltys S; Koch WJ
    Proc Natl Acad Sci U S A; 2009 Apr; 106(14):5825-30. PubMed ID: 19289825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adrenal beta-arrestin 1 inhibition in vivo attenuates post-myocardial infarction progression to heart failure and adverse remodeling via reduction of circulating aldosterone levels.
    Lymperopoulos A; Rengo G; Zincarelli C; Kim J; Koch WJ
    J Am Coll Cardiol; 2011 Jan; 57(3):356-65. PubMed ID: 21232674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of adrenal βarrestin1-dependent aldosterone production by ARBs: head-to-head comparison.
    Dabul S; Bathgate-Siryk A; Valero TR; Jafferjee M; Sturchler E; McDonald P; Koch WJ; Lymperopoulos A
    Sci Rep; 2015 Jan; 5():8116. PubMed ID: 25631300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GRK2-Mediated Crosstalk Between β-Adrenergic and Angiotensin II Receptors Enhances Adrenocortical Aldosterone Production In Vitro and In Vivo.
    Pollard CM; Ghandour J; Cora N; Perez A; Parker BM; Desimine VL; Wertz SL; Pereyra JM; Ferraino KE; Patel JJ; Lymperopoulos A
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative impact of β-arrestin-1 on post-myocardial infarction heart failure via cardiac and adrenal-dependent neurohormonal mechanisms.
    Bathgate-Siryk A; Dabul S; Pandya K; Walklett K; Rengo G; Cannavo A; De Lucia C; Liccardo D; Gao E; Leosco D; Koch WJ; Lymperopoulos A
    Hypertension; 2014 Feb; 63(2):404-12. PubMed ID: 24218435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-activity relationship study of angiotensin II analogs in terms of β-arrestin-dependent signaling to aldosterone production.
    Valero TR; Sturchler E; Jafferjee M; Rengo G; Magafa V; Cordopatis P; McDonald P; Koch WJ; Lymperopoulos A
    Pharmacol Res Perspect; 2016 Apr; 4(2):e00226. PubMed ID: 27069636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angiotensin receptor blocker drugs and inhibition of adrenal beta-arrestin-1-dependent aldosterone production: Implications for heart failure therapy.
    Lymperopoulos A; Aukszi B
    World J Cardiol; 2017 Mar; 9(3):200-206. PubMed ID: 28400916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigallocatechin gallate attenuated the activation of rat cardiac fibroblasts induced by angiotensin II via regulating β-arrestin1.
    Han YS; Lan L; Chu J; Kang WQ; Ge ZM
    Cell Physiol Biochem; 2013; 31(2-3):338-46. PubMed ID: 23485661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adrenal angiotensin II type 1 receptor biased signaling: The case for "biased" inverse agonism for effective aldosterone suppression.
    Ferraino KE; Cora N; Pollard CM; Sizova A; Maning J; Lymperopoulos A
    Cell Signal; 2021 Jun; 82():109967. PubMed ID: 33640432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of βarrestin1 in AT
    Negussie S; Lymperopoulos A; Clark MA
    J Neurochem; 2019 Jan; 148(1):46-62. PubMed ID: 30347436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adrenal βarrestin1 targeting for tobacco-associated cardiac dysfunction treatment: Aldosterone production as the mechanistic link.
    Solesio ME; Mitaishvili E; Lymperopoulos A
    Pharmacol Res Perspect; 2019 Aug; 7(4):e00497. PubMed ID: 31236278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arrestin-dependent angiotensin AT1 receptor signaling regulates Akt and mTor-mediated protein synthesis.
    Kendall RT; Lee MH; Pleasant DL; Robinson K; Kuppuswamy D; McDermott PJ; Luttrell LM
    J Biol Chem; 2014 Sep; 289(38):26155-26166. PubMed ID: 25081544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiotensin-II-directed glomerulosa cell function in fetal adrenal cells.
    Rainey WE; Bird IM; Mason JI
    J Steroid Biochem Mol Biol; 1992 Dec; 43(8):847-54. PubMed ID: 22217828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The beta-arrestin pathway-selective type 1A angiotensin receptor (AT1A) agonist [Sar1,Ile4,Ile8]angiotensin II regulates a robust G protein-independent signaling network.
    Kendall RT; Strungs EG; Rachidi SM; Lee MH; El-Shewy HM; Luttrell DK; Janech MG; Luttrell LM
    J Biol Chem; 2011 Jun; 286(22):19880-91. PubMed ID: 21502318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Independent beta-arrestin2 and Gq/protein kinase Czeta pathways for ERK stimulated by angiotensin type 1A receptors in vascular smooth muscle cells converge on transactivation of the epidermal growth factor receptor.
    Kim J; Ahn S; Rajagopal K; Lefkowitz RJ
    J Biol Chem; 2009 May; 284(18):11953-62. PubMed ID: 19254952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angiotensin II-dependent aldosterone production in the adrenal cortex.
    Lymperopoulos A; Borges JI; Suster MS
    Vitam Horm; 2024; 124():393-404. PubMed ID: 38408805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiotensin-responsive adrenal glomerulosa cell proteins: characterization by protease mapping, species comparison, and specific angiotensin receptor antagonists.
    Elliott ME; Goodfriend TL; Ball DL; Jefcoate CR
    Endocrinology; 1997 Jun; 138(6):2530-6. PubMed ID: 9165045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A role for protein tyrosine kinase in the steroidogenic pathway of angiotensin II in bovine zona glomerulosa cells.
    Bodart V; Ong H; De Léan A
    J Steroid Biochem Mol Biol; 1995 Jul; 54(1-2):55-62. PubMed ID: 7632615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calpain-10 Activity Underlies Angiotensin II-Induced Aldosterone Production in an Adrenal Glomerulosa Cell Model.
    Seremwe M; Schnellmann RG; Bollag WB
    Endocrinology; 2015 Jun; 156(6):2138-49. PubMed ID: 25836666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nicotine-induced adrenal beta-arrestin1 upregulation mediates tobacco-related hyperaldosteronism leading to cardiac dysfunction.
    Cora N; Ghandour J; Pollard CM; Desimine VL; Ferraino KE; Pereyra JM; Valiente R; Lymperopoulos A
    World J Cardiol; 2020 May; 12(5):192-202. PubMed ID: 32547713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.