These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 19290390)
1. Changes to articular cartilage following remote application of radiofrequency energy and with or without Cosequin therapy. Horstman CL; McLaughlin RM; Elder SH; Pool RR; Read RR; Boyle CR Vet Comp Orthop Traumatol; 2009; 22(2):103-12. PubMed ID: 19290390 [TBL] [Abstract][Full Text] [Related]
2. The effect of monopolar radiofrequency energy on partial-thickness defects of articular cartilage. Lu Y; Hayashi K; Hecht P; Fanton GS; Thabit G; Cooley AJ; Edwards RB; Markel MD Arthroscopy; 2000; 16(5):527-36. PubMed ID: 10882450 [TBL] [Abstract][Full Text] [Related]
3. Chondrocyte viability and metabolic activity after treatment of bovine articular cartilage with bipolar radiofrequency: an in vitro study. Amiel D; Ball ST; Tasto JP Arthroscopy; 2004 May; 20(5):503-10. PubMed ID: 15122140 [TBL] [Abstract][Full Text] [Related]
4. Thermal chondroplasty with bipolar and monopolar radiofrequency energy: effect of treatment time on chondrocyte death and surface contouring. Lu Y; Edwards RB; Nho S; Heiner JP; Cole BJ; Markel MD Arthroscopy; 2002 Sep; 18(7):779-88. PubMed ID: 12209437 [TBL] [Abstract][Full Text] [Related]
5. Mechanical and biochemical effect of monopolar radiofrequency energy on human articular cartilage: an in vitro study. Yasura K; Nakagawa Y; Kobayashi M; Kuroki H; Nakamura T Am J Sports Med; 2006 Aug; 34(8):1322-7. PubMed ID: 16685093 [TBL] [Abstract][Full Text] [Related]
6. Thermometric determination of cartilage matrix temperatures during thermal chondroplasty: comparison of bipolar and monopolar radiofrequency devices. Edwards RB; Lu Y; Rodriguez E; Markel MD Arthroscopy; 2002 Apr; 18(4):339-46. PubMed ID: 11951190 [TBL] [Abstract][Full Text] [Related]
7. Assessment of cellular, biochemical, and histologic effects of bipolar radiofrequency treatment of canine articular cartilage. Cook JL; Marberry KM; Kuroki K; Kenter K Am J Vet Res; 2004 May; 65(5):604-9. PubMed ID: 15141880 [TBL] [Abstract][Full Text] [Related]
8. Working conditions of bipolar radiofrequency on human articular cartilage repair following thermal injury during arthroscopy. Huang Y; Zhang Y; Ding X; Liu S; Sun T Chin Med J (Engl); 2014; 127(22):3881-6. PubMed ID: 25421185 [TBL] [Abstract][Full Text] [Related]
9. The use of radiofrequency energy during arthroscopic surgery and its effects on intraarticular tissues. Horstman CL; McLaughlin RM Vet Comp Orthop Traumatol; 2006; 19(2):65-71. PubMed ID: 16810347 [TBL] [Abstract][Full Text] [Related]
10. Effects of radiofrequency energy on human articular cartilage: an analysis of 5 systems. Caffey S; McPherson E; Moore B; Hedman T; Vangsness CT Am J Sports Med; 2005 Jul; 33(7):1035-9. PubMed ID: 15888721 [TBL] [Abstract][Full Text] [Related]
11. Long-term effects of chondrocyte death on rabbit articular cartilage in vivo. Simon WH; Richardson S; Herman W; Parsons JR; Lane J J Bone Joint Surg Am; 1976 Jun; 58(4):517-26. PubMed ID: 57962 [TBL] [Abstract][Full Text] [Related]
12. Influence of Knee Immobilization on Chondrocyte Apoptosis and Histological Features of the Anterior Cruciate Ligament Insertion and Articular Cartilage in Rabbits. Mutsuzaki H; Nakajima H; Wadano Y; Furuhata S; Sakane M Int J Mol Sci; 2017 Jan; 18(2):. PubMed ID: 28134763 [TBL] [Abstract][Full Text] [Related]
13. Monopolar radiofrequency treatment of partial-thickness cartilage defects in the sheep knee joint leads to extended cartilage injury. Kääb MJ; Bail HJ; Rotter A; Mainil-Varlet P; apGwynn I; Weiler A Am J Sports Med; 2005 Oct; 33(10):1472-8. PubMed ID: 16009983 [TBL] [Abstract][Full Text] [Related]
14. Bipolar and monopolar radiofrequency treatment of osteoarthritic knee articular cartilage: acute and temporal effects on cartilage compressive stiffness, permeability, cell synthesis, and extracellular matrix composition. Cook JL; Kuroki K; Kenter K; Marberry K; Brawner T; Geiger T; Jayabalan P; Bal BS J Knee Surg; 2004 Apr; 17(2):99-108. PubMed ID: 15124662 [TBL] [Abstract][Full Text] [Related]
15. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation. Jonnalagadda JB; Rivero IV; Dertien JS J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317 [TBL] [Abstract][Full Text] [Related]
16. Thermal chondroplasty of chondromalacic human cartilage. An ex vivo comparison of bipolar and monopolar radiofrequency devices. Edwards RB; Lu Y; Nho S; Cole BJ; Markel MD Am J Sports Med; 2002; 30(1):90-7. PubMed ID: 11799002 [TBL] [Abstract][Full Text] [Related]
17. [The study of bipolar radiofrequency chondroplasty to cartilage injure of goats]. Zhang J; Wang Y; Hou XK; Shi DW Zhonghua Wai Ke Za Zhi; 2008 Mar; 46(6):446-9. PubMed ID: 18785582 [TBL] [Abstract][Full Text] [Related]
18. The effect of TGF-beta1 and beta-estradiol on glycosaminoglycan and type II collagen distribution in articular chondrocyte cultures. Ab-Rahim S; Selvaratnam L; Kamarul T Cell Biol Int; 2008 Jul; 32(7):841-7. PubMed ID: 18479947 [TBL] [Abstract][Full Text] [Related]
19. An in vivo rabbit model for cartilage trauma: a preliminary study of the influence of impact stress magnitude on chondrocyte death and matrix damage. Milentijevic D; Rubel IF; Liew AS; Helfet DL; Torzilli PA J Orthop Trauma; 2005 Aug; 19(7):466-73. PubMed ID: 16056079 [TBL] [Abstract][Full Text] [Related]
20. Low-frequency electromagnetic field exposure accelerates chondrocytic phenotype expression on chitosan substrate. Chang SH; Hsiao YW; Lin HY Orthopedics; 2011 Jan; 34(1):20. PubMed ID: 21210623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]