These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 19290646)

  • 21. Structural stability of oligomeric chaperonin 10: the role of two beta-strands at the N and C termini in structural stabilization.
    Sakane I; Ikeda M; Matsumoto C; Higurashi T; Inoue K; Hongo K; Mizobata T; Kawata Y
    J Mol Biol; 2004 Dec; 344(4):1123-33. PubMed ID: 15544816
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physico-chemical properties of molten dimer ascorbate oxidase.
    Nicolai E; Di Venere A; Rosato N; Rossi A; Finazzi Agro' A; Mei G
    FEBS J; 2006 Nov; 273(22):5194-204. PubMed ID: 17059465
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multidomain initiation factor 2 from Thermus thermophilus consists of the individual autonomous domains.
    Zoldák G; Sedlák E; Wolfrum A; Musatov A; Fedunová D; Szkaradkiewicz K; Sprinzl M
    Biochemistry; 2008 Apr; 47(17):4992-5005. PubMed ID: 18393450
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computer-based redesign of a protein folding pathway.
    Nauli S; Kuhlman B; Baker D
    Nat Struct Biol; 2001 Jul; 8(7):602-5. PubMed ID: 11427890
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular dynamics simulation of thermal unfolding of Thermatoga maritima DHFR.
    Pang J; Allemann RK
    Phys Chem Chem Phys; 2007 Feb; 9(6):711-8. PubMed ID: 17268682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The proapoptotic protein Smac/DIABLO dimer has the highest stability as measured by pressure and urea denaturation.
    Gonçalves RB; Sanches D; Souza TL; Silva JL; Oliveira AC
    Biochemistry; 2008 Mar; 47(12):3832-41. PubMed ID: 18307314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cofactor-directed reversible denaturation pathways: the cofactor-stabilized Escherichia coli aspartate aminotransferase homodimer unfolds through a pathway that differs from that of the apoenzyme.
    Deu E; Kirsch JF
    Biochemistry; 2007 May; 46(19):5819-29. PubMed ID: 17441730
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Revealing a concealed intermediate that forms after the rate-limiting step of refolding of the SH3 domain of PI3 kinase.
    Wani AH; Udgaonkar JB
    J Mol Biol; 2009 Mar; 387(2):348-62. PubMed ID: 19356591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A tradeoff between protein stability and conformational mobility in homotrimeric dUTPases.
    Takács E; Grolmusz VK; Vértessy BG
    FEBS Lett; 2004 May; 566(1-3):48-54. PubMed ID: 15147867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural, functional and unfolding characteristics of glutathione S-transferase of Plasmodium vivax.
    Tripathi T; Na BK; Sohn WM; Becker K; Bhakuni V
    Arch Biochem Biophys; 2009 Jul; 487(2):115-22. PubMed ID: 19467220
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional impact of polar and acidic substitutions in the lactose repressor hydrophobic monomer.monomer interface with a buried lysine.
    Zhan H; Sun Z; Matthews KS
    Biochemistry; 2009 Feb; 48(6):1305-14. PubMed ID: 19166325
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NMR structure of the conserved hypothetical protein TM0979 from Thermotoga maritima.
    Peti W; Herrmann T; Zagnitko O; Grzechnik SK; Wüthrich K
    Proteins; 2005 May; 59(2):387-90. PubMed ID: 15723348
    [No Abstract]   [Full Text] [Related]  

  • 33. Class Pi glutathione transferase unfolds via a dimeric and not monomeric intermediate: functional implications for an unstable monomer.
    Gildenhuys S; Wallace LA; Burke JP; Balchin D; Sayed Y; Dirr HW
    Biochemistry; 2010 Jun; 49(24):5074-81. PubMed ID: 20481548
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural basis of the substrate subsite and the highly thermal stability of xylanase 10B from Thermotoga maritima MSB8.
    Ihsanawati ; Kumasaka T; Kaneko T; Morokuma C; Yatsunami R; Sato T; Nakamura S; Tanaka N
    Proteins; 2005 Dec; 61(4):999-1009. PubMed ID: 16247799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Equilibrium unfolding of kinetically stable serine protease milin: the presence of various active and inactive dimeric intermediates.
    Yadav SC; Jagannadham MV; Kundu S
    Eur Biophys J; 2010 Sep; 39(10):1385-96. PubMed ID: 20333375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of monomeric S100B and S100A11 proteins at low ionic strength.
    Marlatt NM; Boys BL; Konermann L; Shaw GS
    Biochemistry; 2009 Mar; 48(9):1954-63. PubMed ID: 19216510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NMR structure of a monomeric intermediate on the evolutionarily optimized assembly pathway of a small trimerization domain.
    Habazettl J; Reiner A; Kiefhaber T
    J Mol Biol; 2009 May; 389(1):103-14. PubMed ID: 19361528
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contribution of electrostatic interactions, compactness and quaternary structure to protein thermostability: lessons from structural genomics of Thermotoga maritima.
    Robinson-Rechavi M; Alibés A; Godzik A
    J Mol Biol; 2006 Feb; 356(2):547-57. PubMed ID: 16375925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rates of unfolding, rather than refolding, determine thermal stabilities of thermophilic, mesophilic, and psychrotrophic 3-isopropylmalate dehydrogenases.
    Gráczer E; Varga A; Hajdú I; Melnik B; Szilágyi A; Semisotnov G; Závodszky P; Vas M
    Biochemistry; 2007 Oct; 46(41):11536-49. PubMed ID: 17887729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An intermediate seeks instant gratification.
    Gruebele M
    Nat Struct Biol; 2002 Mar; 9(3):154-5. PubMed ID: 11875509
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.