BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 19290664)

  • 21. Improved surface-patterned platinum microelectrodes for the study of exocytotic events.
    Berberian K; Kisler K; Fang Q; Lindau M
    Anal Chem; 2009 Nov; 81(21):8734-40. PubMed ID: 19780579
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of size-controllable ultrasmall-disk electrode: monitoring single vesicle release kinetics at tiny structures with high spatio-temporal resolution.
    Li ZY; Zhou W; Wu ZX; Zhang RY; Xu T
    Biosens Bioelectron; 2009 Jan; 24(5):1358-64. PubMed ID: 18804366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanocrystalline diamond microelectrode arrays fabricated on sapphire technology for high-time resolution of quantal catecholamine secretion from chromaffin cells.
    Carabelli V; Gosso S; Marcantoni A; Xu Y; Colombo E; Gao Z; Vittone E; Kohn E; Pasquarelli A; Carbone E
    Biosens Bioelectron; 2010 Sep; 26(1):92-8. PubMed ID: 20570501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flame etching enhances the sensitivity of carbon-fiber microelectrodes.
    Strand AM; Venton BJ
    Anal Chem; 2008 May; 80(10):3708-15. PubMed ID: 18416534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neurotransmitter Readily Escapes Detection at the Opposing Microelectrode Surface in Typical Amperometric Measurements of Exocytosis at Single Cells.
    McCarty GS; Dunaway LE; Denison JD; Sombers LA
    Anal Chem; 2022 Jul; 94(27):9548-9556. PubMed ID: 35750055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fully automated microchip system for the detection of quantal exocytosis from single and small ensembles of cells.
    Spégel C; Heiskanen A; Pedersen S; Emnéus J; Ruzgas T; Taboryski R
    Lab Chip; 2008 Feb; 8(2):323-9. PubMed ID: 18231673
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lithographic Microfabrication of a 16-Electrode Array on a Probe Tip for High Spatial Resolution Electrochemical Localization of Exocytosis.
    Wigström J; Dunevall J; Najafinobar N; Lovrić J; Wang J; Ewing AG; Cans AS
    Anal Chem; 2016 Feb; 88(4):2080-7. PubMed ID: 26771211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of Disk and Nanotip Electrodes for Measurement of Single-Cell Amperometry during Exocytotic Release.
    Gu C; Zhang X; Ewing AG
    Anal Chem; 2020 Aug; 92(15):10268-10273. PubMed ID: 32628468
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coupling of electrochemistry and fluorescence microscopy at indium tin oxide microelectrodes for the analysis of single exocytotic events.
    Amatore C; Arbault S; Chen Y; Crozatier C; Lemaître F; Verchier Y
    Angew Chem Int Ed Engl; 2006 Jun; 45(24):4000-3. PubMed ID: 16683291
    [No Abstract]   [Full Text] [Related]  

  • 30. [A method for preparation of carbon fiber electrode].
    Cai D; Qu AL; Wang XM; Zhou Z; Xu JH; Han JS
    Sheng Li Xue Bao; 1999 Dec; 51(6):692-9. PubMed ID: 11498941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exocytosis of a single bovine adrenal chromaffin cell: the electrical and morphological studies.
    Tsai CC; Yang CC; Shih PY; Wu CS; Chen CD; Pan CY; Chen YT
    J Phys Chem B; 2008 Jul; 112(30):9165-73. PubMed ID: 18598074
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amperometric study of the kinetics of exocytosis in mouse adrenal slice chromaffin cells: physiological and methodological insights.
    Arroyo G; Fuentealba J; Sevane-Fernández N; Aldea M; García AG; Albillos A
    J Neurophysiol; 2006 Sep; 96(3):1196-202. PubMed ID: 16723417
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microwell device for targeting single cells to electrochemical microelectrodes for high-throughput amperometric detection of quantal exocytosis.
    Liu X; Barizuddin S; Shin W; Mathai CJ; Gangopadhyay S; Gillis KD
    Anal Chem; 2011 Apr; 83(7):2445-51. PubMed ID: 21355543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amperometric characterization of exocytotic events from single mast cells: dependence on external and internal Ca++ sources.
    Jaffe EH; Bolaños P; Caputo C
    Cell Calcium; 2001 Mar; 29(3):199-209. PubMed ID: 11162857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics of full fusion during vesicular exocytotic events: release of adrenaline by chromaffin cells.
    Amatore C; Arbault S; Bonifas I; Bouret Y; Erard M; Guille M
    Chemphyschem; 2003 Feb; 4(2):147-54. PubMed ID: 12619413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A microfluidic cell trap device for automated measurement of quantal catecholamine release from cells.
    Gao Y; Bhattacharya S; Chen X; Barizuddin S; Gangopadhyay S; Gillis KD
    Lab Chip; 2009 Dec; 9(23):3442-6. PubMed ID: 19904414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A rapid exocytosis mode in chromaffin cells with a neuronal phenotype.
    Ardiles AO; Maripillán J; Lagos VL; Toro R; Mora IG; Villarroel L; Alés E; Borges R; Cárdenas AM
    J Neurochem; 2006 Oct; 99(1):29-41. PubMed ID: 16889641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time course of release of catecholamines from individual vesicles during exocytosis at adrenal medullary cells.
    Wightman RM; Schroeder TJ; Finnegan JM; Ciolkowski EL; Pihel K
    Biophys J; 1995 Jan; 68(1):383-90. PubMed ID: 7711264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preferential localization of exocytotic active zones in the terminals of neurite-emitting chromaffin cells.
    Gutiérrez LM; Gil A; Viniegra S
    Eur J Cell Biol; 1998 Aug; 76(4):274-8. PubMed ID: 9765057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemical detection of exocytosis at single rat melanotrophs.
    Paras CD; Kennedy RT
    Anal Chem; 1995 Oct; 67(20):3633-7. PubMed ID: 8644916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.