These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 19290795)

  • 21. No association of the CYP3A5*1 allele with blood pressure and left ventricular mass and geometry: the KORA/MONICA Augsburg echocardiographic substudy.
    Lieb W; Bolbrinker J; Döring A; Hense HW; Erdmann J; Schunkert H; Kreutz R
    Clin Sci (Lond); 2006 Dec; 111(6):365-72. PubMed ID: 16822233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of MDR1 and CYP3A5 on the oral clearance of tacrolimus and tacrolimus-related renal dysfunction in adult living-donor liver transplant patients.
    Fukudo M; Yano I; Yoshimura A; Masuda S; Uesugi M; Hosohata K; Katsura T; Ogura Y; Oike F; Takada Y; Uemoto S; Inui K
    Pharmacogenet Genomics; 2008 May; 18(5):413-23. PubMed ID: 18408564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Xenobiotic metabolizing and transporter genes: gene-gene interactions in schizophrenia and related disorders.
    Gassó P; Mas S; Alvarez S; Trias G; Bioque M; Oliveira C; Bernardo M; Lafuente A
    Pharmacogenomics; 2010 Dec; 11(12):1725-31. PubMed ID: 21142916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors.
    Wadelius M; Sörlin K; Wallerman O; Karlsson J; Yue QY; Magnusson PK; Wadelius C; Melhus H
    Pharmacogenomics J; 2004; 4(1):40-8. PubMed ID: 14676821
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ABCB1 single-nucleotide polymorphisms determine tacrolimus response in patients with ulcerative colitis.
    Herrlinger KR; Koc H; Winter S; Teml A; Stange EF; Fellermann K; Fritz P; Schwab M; Schaeffeler E
    Clin Pharmacol Ther; 2011 Mar; 89(3):422-8. PubMed ID: 21289623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CYP3A5 *1 allele: impacts on early acute rejection and graft function in tacrolimus-based renal transplant recipients.
    Min SI; Kim SY; Ahn SH; Min SK; Kim SH; Kim YS; Moon KC; Oh JM; Kim SJ; Ha J
    Transplantation; 2010 Dec; 90(12):1394-400. PubMed ID: 21076384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of pharmacokinetics and pharmacogenetics of once- and twice-daily tacrolimus in the early stage after renal transplantation.
    Niioka T; Satoh S; Kagaya H; Numakura K; Inoue T; Saito M; Narita S; Tsuchiya N; Habuchi T; Miura M
    Transplantation; 2012 Nov; 94(10):1013-9. PubMed ID: 23073468
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polymorphisms in genes involved in vincristine pharmacokinetics or pharmacodynamics are not related to impaired motor performance in children with leukemia.
    Hartman A; van Schaik RH; van der Heiden IP; Broekhuis MJ; Meier M; den Boer ML; Pieters R
    Leuk Res; 2010 Feb; 34(2):154-9. PubMed ID: 19467705
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CYP3A5*3 and MDR-1 C3435T single nucleotide polymorphisms in six Chinese ethnic groups.
    Lai Y; Zhang J; Wang YX; Wang XD; Li JL; Wang YH; Zeng YJ; Huang M
    Pharmazie; 2011 Feb; 66(2):136-40. PubMed ID: 21434577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microarray Analysis of Hypertension.
    Keen HL; Sigmund CD
    Methods Mol Biol; 2017; 1527():41-52. PubMed ID: 28116705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome scans for hypertension and blood pressure regulation.
    Samani NJ
    Am J Hypertens; 2003 Feb; 16(2):167-71. PubMed ID: 12559688
    [No Abstract]   [Full Text] [Related]  

  • 32. ExActa: blood pressure.
    Mrowka R; Reuter S
    Acta Physiol (Oxf); 2016 Jul; 217(3):178-9. PubMed ID: 27218862
    [No Abstract]   [Full Text] [Related]  

  • 33. Candidate genes revisited in the genetics of hypertension and blood pressure.
    Kato N
    Hypertens Res; 2013 Dec; 36(12):1032-4. PubMed ID: 23945960
    [No Abstract]   [Full Text] [Related]  

  • 34. Genes, gender and blood pressure regulation.
    Johns EJ
    J Hypertens; 2003 Aug; 21(8):1447-8. PubMed ID: 12872033
    [No Abstract]   [Full Text] [Related]  

  • 35. Genetic control of blood pressure in mice.
    Schlager G; Weibust RS
    Genetics; 1967 Mar; 55(3):497-506. PubMed ID: 6038422
    [No Abstract]   [Full Text] [Related]  

  • 36. Correlation between ABCB1 and OLIG2 polymorphisms and the severity and prognosis of patients with cerebral infarction.
    Liang C; Huang C; Nong Z; Li S; Lin M; Qin Z
    Open Med (Wars); 2024; 19(1):20230841. PubMed ID: 38221931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential drug response in pulmonary arterial hypertension: The potential for precision medicine.
    Miller E; Sampson CU; Desai AA; Karnes JH
    Pulm Circ; 2023 Oct; 13(4):e12304. PubMed ID: 37927610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PXR and 4β-Hydroxycholesterol Axis and the Components of Metabolic Syndrome.
    Hukkanen J; Hakkola J
    Cells; 2020 Nov; 9(11):. PubMed ID: 33182477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of Genetic Admixture Components on
    Galaviz-Hernández C; Lazalde-Ramos BP; Lares-Assef I; Macías-Salas A; Ortega-Chavez MA; Rangel-Villalobos H; Sosa-Macías M
    Front Pharmacol; 2020; 11():638. PubMed ID: 32477124
    [No Abstract]   [Full Text] [Related]  

  • 40. Association between CYP3A4 gene rs4646437 polymorphism and the risk of hypertension in Chinese population: a case-control study.
    Wang J; Ji H; Jia H; Guan D
    Biosci Rep; 2019 Apr; 39(4):. PubMed ID: 30910847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.