BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

649 related articles for article (PubMed ID: 19290865)

  • 1. Density functional theory (DFT) and combined quantum mechanical/molecular mechanics (QM/MM) studies on the oxygen activation step in nitric oxide synthase enzymes.
    de Visser SP
    Biochem Soc Trans; 2009 Apr; 37(Pt 2):373-7. PubMed ID: 19290865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation?
    de Visser SP; Tan LS
    J Am Chem Soc; 2008 Oct; 130(39):12961-74. PubMed ID: 18774806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multireference ab initio quantum mechanics/molecular mechanics study on intermediates in the catalytic cycle of cytochrome P450(cam).
    Altun A; Kumar D; Neese F; Thiel W
    J Phys Chem A; 2008 Dec; 112(50):12904-10. PubMed ID: 18543897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum chemical calculations of the NHA bound nitric oxide synthase active site: O2 binding and implications for the catalytic mechanism.
    Cho KB; Gauld JW
    J Am Chem Soc; 2004 Aug; 126(33):10267-70. PubMed ID: 15315438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density functional theory applied to a difference in pathways taken by the enzymes cytochrome P450 and superoxide reductase: spin States of ferric hydroperoxo intermediates and hydrogen bonds from water.
    Surawatanawong P; Tye JW; Hall MB
    Inorg Chem; 2010 Jan; 49(1):188-98. PubMed ID: 19968237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First half-reaction mechanism of nitric oxide synthase: the role of proton and oxygen coupled electron transfer in the reaction by quantum mechanics/molecular mechanics.
    Cho KB; Carvajal MA; Shaik S
    J Phys Chem B; 2009 Jan; 113(1):336-46. PubMed ID: 19072325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Common system setup for the entire catalytic cycle of cytochrome P450(cam) in quantum mechanical/molecular mechanical studies.
    Zheng J; Altun A; Thiel W
    J Comput Chem; 2007 Oct; 28(13):2147-58. PubMed ID: 17450550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compound I of nitric oxide synthase: the active site protonation state.
    Cho KB; Derat E; Shaik S
    J Am Chem Soc; 2007 Mar; 129(11):3182-8. PubMed ID: 17319660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate specificity of NO synthases: detailed comparison of L-arginine, homo-L-arginine, their N omega-hydroxy derivatives, and N omega-hydroxynor-L-arginine.
    Moali C; Boucher JL; Sari MA; Stuehr DJ; Mansuy D
    Biochemistry; 1998 Jul; 37(29):10453-60. PubMed ID: 9671515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A density functional theory investigation on the mechanism of the second half-reaction of nitric oxide synthase.
    Robinet JJ; Cho KB; Gauld JW
    J Am Chem Soc; 2008 Mar; 130(11):3328-34. PubMed ID: 18293966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundamental differences of substrate hydroxylation by high-valent iron(IV)-oxo models of cytochrome P450.
    Tahsini L; Bagherzadeh M; Nam W; de Visser SP
    Inorg Chem; 2009 Jul; 48(14):6661-9. PubMed ID: 19469505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and synthesis of C5 methylated L-arginine analogues as active site probes for nitric oxide synthase.
    Martin NI; Woodward JJ; Winter MB; Beeson WT; Marletta MA
    J Am Chem Soc; 2007 Oct; 129(41):12563-70. PubMed ID: 17892291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome P450 catalyzed nitric oxide synthesis: a theoretical study.
    Keserü GM; Volk B; Balogh GT
    J Biomol Struct Dyn; 2000 Feb; 17(4):759-67. PubMed ID: 10698112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum mechanical/molecular mechanical study on the mechanisms of compound I formation in the catalytic cycle of chloroperoxidase: an overview on heme enzymes.
    Chen H; Hirao H; Derat E; Schlichting I; Shaik S
    J Phys Chem B; 2008 Aug; 112(31):9490-500. PubMed ID: 18597525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative nitric oxide-producing substrates for NO synthases.
    Mansuy D; Boucher JL
    Free Radic Biol Med; 2004 Oct; 37(8):1105-21. PubMed ID: 15451052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The catalytic mechanism of peptidylglycine alpha-hydroxylating monooxygenase investigated by computer simulation.
    Crespo A; Martí MA; Roitberg AE; Amzel LM; Estrin DA
    J Am Chem Soc; 2006 Oct; 128(39):12817-28. PubMed ID: 17002377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QM/MM study of mechanisms for compound I formation in the catalytic cycle of cytochrome P450cam.
    Zheng J; Wang D; Thiel W; Shaik S
    J Am Chem Soc; 2006 Oct; 128(40):13204-15. PubMed ID: 17017800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The second step of the nitric oxide synthase reaction: evidence for ferric-peroxo as the active oxidant.
    Woodward JJ; Chang MM; Martin NI; Marletta MA
    J Am Chem Soc; 2009 Jan; 131(1):297-305. PubMed ID: 19128180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic mechanism of glycosyltransferases: hybrid quantum mechanical/molecular mechanical study of the inverting N-acetylglucosaminyltransferase I.
    Kozmon S; Tvaroska I
    J Am Chem Soc; 2006 Dec; 128(51):16921-7. PubMed ID: 17177443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational enzymology: insight into biological catalysts from modelling.
    van der Kamp MW; Mulholland AJ
    Nat Prod Rep; 2008 Dec; 25(6):1001-14. PubMed ID: 19030602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.