These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

650 related articles for article (PubMed ID: 19290865)

  • 21. Oxygenase domain of Drosophila melanogaster nitric oxide synthase: unique kinetic parameters enable a more efficient NO release.
    Ray SS; Tejero J; Wang ZQ; Dutta T; Bhattacharjee A; Regulski M; Tully T; Ghosh S; Stuehr DJ
    Biochemistry; 2007 Oct; 46(42):11857-64. PubMed ID: 17900148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrosyl-heme structures of Bacillus subtilis nitric oxide synthase have implications for understanding substrate oxidation.
    Pant K; Crane BR
    Biochemistry; 2006 Feb; 45(8):2537-44. PubMed ID: 16489746
    [TBL] [Abstract][Full Text] [Related]  

  • 23. EPR and ENDOR characterization of the reactive intermediates in the generation of NO by cryoreduced oxy-nitric oxide synthase from Geobacillus stearothermophilus.
    Davydov R; Sudhamsu J; Lees NS; Crane BR; Hoffman BM
    J Am Chem Soc; 2009 Oct; 131(40):14493-507. PubMed ID: 19754116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical study on the mechanism of the oxygen activation process in cysteine dioxygenase enzymes.
    Kumar D; Thiel W; de Visser SP
    J Am Chem Soc; 2011 Mar; 133(11):3869-82. PubMed ID: 21344861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transient species involved in catalytic dioxygen/peroxide activation by hemoproteins: possible involvement of protonated Compound I species.
    Silaghi-Dumitrescu R; Cooper CE
    Dalton Trans; 2005 Nov; (21):3477-82. PubMed ID: 16234928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New features in the catalytic cycle of cytochrome P450 during the formation of compound I from compound 0.
    Kumar D; Hirao H; de Visser SP; Zheng J; Wang D; Thiel W; Shaik S
    J Phys Chem B; 2005 Oct; 109(42):19946-51. PubMed ID: 16853579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantum mechanics/molecular mechanics study of the catalytic cycle of water splitting in photosystem II.
    Sproviero EM; Gascón JA; McEvoy JP; Brudvig GW; Batista VS
    J Am Chem Soc; 2008 Mar; 130(11):3428-42. PubMed ID: 18290643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronic properties of pentacoordinated heme complexes in cytochrome P450 enzymes: search for an Fe(I) oxidation state.
    Porro CS; Kumar D; de Visser SP
    Phys Chem Chem Phys; 2009 Nov; 11(43):10219-26. PubMed ID: 19865780
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A theoretical study on the mechanism of camphor hydroxylation by compound I of cytochrome p450.
    Kamachi T; Yoshizawa K
    J Am Chem Soc; 2003 Apr; 125(15):4652-61. PubMed ID: 12683838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reactivity of the heme-dioxygen complex of the inducible nitric oxide synthase in the presence of alternative substrates.
    Lefèvre-Groboillot D; Boucher JL; Mansuy D; Stuehr DJ
    FEBS J; 2006 Jan; 273(1):180-91. PubMed ID: 16367758
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structures of the high-valent metal-ion haem-oxygen intermediates in peroxidases, oxygenases and catalases.
    Hersleth HP; Ryde U; Rydberg P; Görbitz CH; Andersson KK
    J Inorg Biochem; 2006 Apr; 100(4):460-76. PubMed ID: 16510192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cytochrome P450CAM enzymatic catalysis cycle: a quantum mechanics/molecular mechanics study.
    Guallar V; Friesner RA
    J Am Chem Soc; 2004 Jul; 126(27):8501-8. PubMed ID: 15238007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A DFT study of nucleobase dealkylation by the DNA repair enzyme AlkB.
    Liu H; Llano J; Gauld JW
    J Phys Chem B; 2009 Apr; 113(14):4887-98. PubMed ID: 19338370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular oxygen activation and proton transfer mechanisms in lanosterol 14alpha-demethylase catalysis.
    Sen K; Hackett JC
    J Phys Chem B; 2009 Jun; 113(23):8170-82. PubMed ID: 19438188
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Substrate- and isoform-specific dioxygen complexes of nitric oxide synthase.
    Li D; Kabir M; Stuehr DJ; Rousseau DL; Yeh SR
    J Am Chem Soc; 2007 May; 129(21):6943-51. PubMed ID: 17488012
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 4,4-Difluorinated analogues of l-arginine and N(G)-hydroxy-l-arginine as mechanistic probes for nitric oxide synthase.
    Martin NI; Woodward JJ; Winter MB; Marletta MA
    Bioorg Med Chem Lett; 2009 Mar; 19(6):1758-62. PubMed ID: 19230661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Revisiting heme mechanisms. A perspective on the mechanisms of nitric oxide synthase (NOS), Heme oxygenase (HO), and cytochrome P450s (CYP450s).
    Zhu Y; Silverman RB
    Biochemistry; 2008 Feb; 47(8):2231-43. PubMed ID: 18237198
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reductive activation of Cr(Vi) by nitric oxide synthase.
    Porter R; Jáchymová M; Martásek P; Kalyanaraman B; Vásquez-Vivar J
    Chem Res Toxicol; 2005 May; 18(5):834-43. PubMed ID: 15892577
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantum mechanical/molecular mechanical investigation of the mechanism of C-H hydroxylation of camphor by cytochrome P450cam: theory supports a two-state rebound mechanism.
    Schöneboom JC; Cohen S; Lin H; Shaik S; Thiel W
    J Am Chem Soc; 2004 Mar; 126(12):4017-34. PubMed ID: 15038756
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ligand-protein interactions in nitric oxide synthase.
    Rousseau DL; Li D; Couture M; Yeh SR
    J Inorg Biochem; 2005 Jan; 99(1):306-23. PubMed ID: 15598509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.