These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 19291710)

  • 1. Acute hypoxia and osteoclast activity: a balance between enhanced resorption and increased apoptosis.
    Knowles HJ; Athanasou NA
    J Pathol; 2009 Jun; 218(2):256-64. PubMed ID: 19291710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxia-inducible factor is expressed in giant cell tumour of bone and mediates paracrine effects of hypoxia on monocyte-osteoclast differentiation via induction of VEGF.
    Knowles HJ; Athanasou NA
    J Pathol; 2008 May; 215(1):56-66. PubMed ID: 18283716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxia is a major stimulator of osteoclast formation and bone resorption.
    Arnett TR; Gibbons DC; Utting JC; Orriss IR; Hoebertz A; Rosendaal M; Meghji S
    J Cell Physiol; 2003 Jul; 196(1):2-8. PubMed ID: 12767036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of cathepsin K accelerates the resorption cycle and osteoblast differentiation in vitro.
    Morko J; Kiviranta R; Mulari MT; Ivaska KK; Väänänen HK; Vuorio E; Laitala-Leinonen T
    Bone; 2009 Apr; 44(4):717-28. PubMed ID: 19118660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. siRNA targeting HIF-1alpha induces apoptosis of pancreatic cancer cells through NF-kappaB-independent and -dependent pathways under hypoxic conditions.
    Chen C; Yu Z
    Anticancer Res; 2009 Apr; 29(4):1367-72. PubMed ID: 19414389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human osteoclast cathepsin K is processed intracellularly prior to attachment and bone resorption.
    Dodds RA; James IE; Rieman D; Ahern R; Hwang SM; Connor JR; Thompson SD; Veber DF; Drake FH; Holmes S; Lark MW; Gowen M
    J Bone Miner Res; 2001 Mar; 16(3):478-86. PubMed ID: 11277265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized transfection of diced siRNA into mature primary human osteoclasts: inhibition of cathepsin K mediated bone resorption by siRNA.
    Selinger CI; Day CJ; Morrison NA
    J Cell Biochem; 2005 Dec; 96(5):996-1002. PubMed ID: 16149069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer.
    Hiraga T; Kizaka-Kondoh S; Hirota K; Hiraoka M; Yoneda T
    Cancer Res; 2007 May; 67(9):4157-63. PubMed ID: 17483326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A highly potent inhibitor of cathepsin K (relacatib) reduces biomarkers of bone resorption both in vitro and in an acute model of elevated bone turnover in vivo in monkeys.
    Kumar S; Dare L; Vasko-Moser JA; James IE; Blake SM; Rickard DJ; Hwang SM; Tomaszek T; Yamashita DS; Marquis RW; Oh H; Jeong JU; Veber DF; Gowen M; Lark MW; Stroup G
    Bone; 2007 Jan; 40(1):122-31. PubMed ID: 16962401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The increased in vitro osteoclastogenesis in patients with rheumatoid arthritis is due to increased percentage of precursors and decreased apoptosis - the In Vitro Osteoclast Differentiation in Arthritis (IODA) study.
    Durand M; Boire G; Komarova SV; Dixon SJ; Sims SM; Harrison RE; Nabavi N; Maria O; Manolson MF; Mizianty M; Kurgan L; de Brum-Fernandes AJ
    Bone; 2011 Mar; 48(3):588-96. PubMed ID: 20959150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the kinetics of osteoclastogenesis in arthritic rats.
    Schett G; Stolina M; Bolon B; Middleton S; Adlam M; Brown H; Zhu L; Feige U; Zack DJ
    Arthritis Rheum; 2005 Oct; 52(10):3192-201. PubMed ID: 16200623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cystatin B as an intracellular modulator of bone resorption.
    Laitala-Leinonen T; Rinne R; Saukko P; Väänänen HK; Rinne A
    Matrix Biol; 2006 Apr; 25(3):149-57. PubMed ID: 16321512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and characterization of a human in vitro resorption assay: demonstration of utility using novel antiresorptive agents.
    James IE; Lark MW; Zembryki D; Lee-Rykaczewski EV; Hwang SM; Tomaszek TA; Belfiore P; Gowen M
    J Bone Miner Res; 1999 Sep; 14(9):1562-9. PubMed ID: 10469285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipopolysaccharides (LPS) induce the differentiation of human monocytes to osteoclasts in a tumour necrosis factor (TNF) alpha-dependent manner: a link between infection and pathological bone resorption.
    Mörmann M; Thederan M; Nackchbandi I; Giese T; Wagner C; Hänsch GM
    Mol Immunol; 2008 Jul; 45(12):3330-7. PubMed ID: 18538847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia-inducible factor regulates osteoclast-mediated bone resorption: role of angiopoietin-like 4.
    Knowles HJ; Cleton-Jansen AM; Korsching E; Athanasou NA
    FASEB J; 2010 Dec; 24(12):4648-59. PubMed ID: 20667978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia/reoxygenation induces CTGF and PAI-1 in cultured human retinal pigment epithelium cells.
    Fuchshofer R; Yu AL; Teng HH; Strauss R; Kampik A; Welge-Lussen U
    Exp Eye Res; 2009 May; 88(5):889-99. PubMed ID: 19118548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Lysine-Specific Demethylase 1 in Metabolically Integrating Osteoclast Differentiation and Inflammatory Bone Resorption Through Hypoxia-Inducible Factor 1α and E2F1.
    Doi K; Murata K; Ito S; Suzuki A; Terao C; Ishie S; Umemoto A; Murotani Y; Nishitani K; Yoshitomi H; Fujii T; Watanabe R; Hashimoto M; Murakami K; Tanaka M; Ito H; Park-Min KH; Ivashkiv LB; Morinobu A; Matsuda S
    Arthritis Rheumatol; 2022 Jun; 74(6):948-960. PubMed ID: 35077015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of molecules in mother-of-pearl on the decrease in bone resorption through the inhibition of osteoclast cathepsin K.
    Duplat D; Gallet M; Berland S; Marie A; Dubost L; Rousseau M; Kamel S; Milet C; Brazier M; Lopez E; Bédouet L
    Biomaterials; 2007 Nov; 28(32):4769-78. PubMed ID: 17686515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoclast lineage and function.
    Väänänen HK; Laitala-Leinonen T
    Arch Biochem Biophys; 2008 May; 473(2):132-8. PubMed ID: 18424258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different cysteine proteinases involved in bone resorption and osteoclast formation.
    Brage M; Abrahamson M; Lindström V; Grubb A; Lerner UH
    Calcif Tissue Int; 2005 Jun; 76(6):439-47. PubMed ID: 15906014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.