These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 19291975)
1. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy. Sengbusch E; Pérez-Andújar A; DeLuca PM; Mackie TR Med Phys; 2009 Feb; 36(2):364-72. PubMed ID: 19291975 [TBL] [Abstract][Full Text] [Related]
2. Systematic out-of-field secondary neutron spectrometry and dosimetry in pencil beam scanning proton therapy. Trinkl S; Mares V; Englbrecht FS; Wilkens JJ; Wielunski M; Parodi K; Rühm W; Hillbrand M Med Phys; 2017 May; 44(5):1912-1920. PubMed ID: 28294362 [TBL] [Abstract][Full Text] [Related]
3. A comprehensive Monte Carlo study of out-of-field secondary neutron spectra in a scanned-beam proton therapy gantry room. Englbrecht FS; Trinkl S; Mares V; Rühm W; Wielunski M; Wilkens JJ; Hillbrand M; Parodi K Z Med Phys; 2021 May; 31(2):215-228. PubMed ID: 33622567 [TBL] [Abstract][Full Text] [Related]
4. Shielding implications for secondary neutrons and photons produced within the patient during IMPT. DeMarco J; Kupelian P; Santhanam A; Low D Med Phys; 2013 Jul; 40(7):071701. PubMed ID: 23822405 [TBL] [Abstract][Full Text] [Related]
5. Maximum kinetic energy considerations in proton stereotactic radiosurgery. Sengbusch ER; Mackie TR J Appl Clin Med Phys; 2011 Apr; 12(3):3533. PubMed ID: 21844866 [TBL] [Abstract][Full Text] [Related]
6. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems. Farah J; Mares V; Romero-Expósito M; Trinkl S; Domingo C; Dufek V; Klodowska M; Kubancak J; Knežević Ž; Liszka M; Majer M; Miljanić S; Ploc O; Schinner K; Stolarczyk L; Trompier F; Wielunski M; Olko P; Harrison RM Med Phys; 2015 May; 42(5):2572-84. PubMed ID: 25979049 [TBL] [Abstract][Full Text] [Related]
7. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy. Allen DA; Beynon TD; Green S Med Phys; 1999 Jan; 26(1):71-6. PubMed ID: 9949400 [TBL] [Abstract][Full Text] [Related]
8. The determination of a dose deposited in reference medium due to (p,n) reaction occurring during proton therapy. Dawidowska A; Ferszt MP; Konefał A Rep Pract Oncol Radiother; 2014 May; 19(Suppl):S3-S8. PubMed ID: 28443192 [TBL] [Abstract][Full Text] [Related]
9. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs. Chibani O; Ma CM Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965 [TBL] [Abstract][Full Text] [Related]
10. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system. Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412 [TBL] [Abstract][Full Text] [Related]
11. A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy. Mares V; Romero-Expósito M; Farah J; Trinkl S; Domingo C; Dommert M; Stolarczyk L; Van Ryckeghem L; Wielunski M; Olko P; Harrison RM Phys Med Biol; 2016 Jun; 61(11):4127-40. PubMed ID: 27171358 [TBL] [Abstract][Full Text] [Related]
12. Radiation shielding assessment of high-energy proton imaging at a proton therapy facility. Penfold SN Med Phys; 2022 Aug; 49(8):5340-5346. PubMed ID: 35611603 [TBL] [Abstract][Full Text] [Related]
13. Commissioning and beam characterization of the first gantry-mounted accelerator pencil beam scanning proton system. Kang M; Pang D Med Phys; 2020 Aug; 47(8):3496-3510. PubMed ID: 31840264 [TBL] [Abstract][Full Text] [Related]
14. A particle track-repeating algorithm for proton beam dose calculation. Li JS; Shahine B; Fourkal E; Ma CM Phys Med Biol; 2005 Mar; 50(5):1001-10. PubMed ID: 15798272 [TBL] [Abstract][Full Text] [Related]
15. Monte Carlo simulations of neutron spectral fluence, radiation weighting factor and ambient dose equivalent for a passively scattered proton therapy unit. Zheng Y; Fontenot J; Taddei P; Mirkovic D; Newhauser W Phys Med Biol; 2008 Jan; 53(1):187-201. PubMed ID: 18182696 [TBL] [Abstract][Full Text] [Related]
16. Investigation of the use of external aluminium targets for portal imaging in a medical accelerator using Geant4 Monte Carlo simulation. Kim H; Kim B; Baek J; Oh Y; Yun S; Jang H Br J Radiol; 2018 Apr; 91(1084):20170376. PubMed ID: 29338304 [TBL] [Abstract][Full Text] [Related]
17. An experimental study of the moderator assembly for a low-energy proton accelerator neutron irradiation facility for BNCT. Wang CK; Blue TE; Blue JW Basic Life Sci; 1990; 54():271-80. PubMed ID: 2176457 [TBL] [Abstract][Full Text] [Related]
18. A design study for an accelerator-based epithermal neutron beam for BNCT. Allen DA; Beynon TD Phys Med Biol; 1995 May; 40(5):807-21. PubMed ID: 7652009 [TBL] [Abstract][Full Text] [Related]
19. Investigation on using high-energy proton beam for total body irradiation (TBI). Zhang M; Qin N; Jia X; Zou WJ; Khan A; Yue NJ J Appl Clin Med Phys; 2016 Sep; 17(5):90-98. PubMed ID: 27685117 [TBL] [Abstract][Full Text] [Related]
20. Measurement of the neutron leakage from a dedicated intraoperative radiation therapy electron linear accelerator and a conventional linear accelerator for 9, 12, 15(16), and 18(20) MeV electron energies. Jaradat AK; Biggs PJ Med Phys; 2008 May; 35(5):1711-7. PubMed ID: 18561646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]