BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 19292001)

  • 1. Evaluation of quantitative imaging methods for organ activity and residence time estimation using a population of phantoms having realistic variations in anatomy and uptake.
    He B; Du Y; Segars WP; Wahl RL; Sgouros G; Jacene H; Frey EC
    Med Phys; 2009 Feb; 36(2):612-9. PubMed ID: 19292001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of shortened acquisition time on accuracy and precision of quantitative estimates of organ activity.
    He B; Frey EC
    Med Phys; 2010 Apr; 37(4):1807-15. PubMed ID: 20443503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of conventional, model-based quantitative planar, and quantitative SPECT image processing methods for organ activity estimation using In-111 agents.
    He B; Frey EC
    Phys Med Biol; 2006 Aug; 51(16):3967-81. PubMed ID: 16885618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of residence time estimation methods for radioimmunotherapy dosimetry and treatment planning--Monte Carlo simulation studies.
    He B; Wahl RL; Du Y; Sgouros G; Jacene H; Flinn I; Frey EC
    IEEE Trans Med Imaging; 2008 Apr; 27(4):521-30. PubMed ID: 18390348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Monte Carlo and physical phantom evaluation of quantitative In-111 SPECT.
    He B; Du Y; Song X; Segars WP; Frey EC
    Phys Med Biol; 2005 Sep; 50(17):4169-85. PubMed ID: 16177538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of 3D volume of interest definition on accuracy and precision of activity estimation in quantitative SPECT and planar processing methods.
    He B; Frey EC
    Phys Med Biol; 2010 Jun; 55(12):3535-44. PubMed ID: 20508323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EQPlanar: a maximum-likelihood method for accurate organ activity estimation from whole body planar projections.
    Song N; He B; Wahl RL; Frey EC
    Phys Med Biol; 2011 Sep; 56(17):5503-24. PubMed ID: 21813961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters.
    Cheng L; Hobbs RF; Segars PW; Sgouros G; Frey EC
    Phys Med Biol; 2013 Jun; 58(11):3631-47. PubMed ID: 23648371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of volume-of-interest misregistration on quantitative planar activity and dose estimation.
    Song N; He B; Frey EC
    Phys Med Biol; 2010 Sep; 55(18):5483-97. PubMed ID: 20798459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved dosimetry for targeted radionuclide therapy using nonrigid registration on sequential SPECT images.
    Ao EC; Wu NY; Wang SJ; Song N; Mok GS
    Med Phys; 2015 Feb; 42(2):1060-70. PubMed ID: 25652518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and evaluation of a model-based downscatter compensation method for quantitative I-131 SPECT.
    Song N; Du Y; He B; Frey EC
    Med Phys; 2011 Jun; 38(6):3193-204. PubMed ID: 21815394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and evaluation of an improved quantitative (90)Y bremsstrahlung SPECT method.
    Rong X; Du Y; Ljungberg M; Rault E; Vandenberghe S; Frey EC
    Med Phys; 2012 May; 39(5):2346-58. PubMed ID: 22559605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of organ residence time estimation methods for radioimmunotherapy dosimetry and treatment planning--patient studies.
    He B; Wahl RL; Sgouros G; Du Y; Jacene H; Kasecamp WR; Flinn I; Hammes RJ; Bianco J; Kahl B; Frey EC
    Med Phys; 2009 May; 36(5):1595-601. PubMed ID: 19544775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a digital phantom population for myocardial perfusion SPECT imaging research.
    Ghaly M; Du Y; Fung GS; Tsui BM; Links JM; Frey E
    Phys Med Biol; 2014 Jun; 59(12):2935-53. PubMed ID: 24841729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative simultaneous 111In∕99mTc SPECT-CT of osteomyelitis.
    Cervo M; Gerbaudo VH; Park MA; Moore SC
    Med Phys; 2013 Aug; 40(8):082501. PubMed ID: 23927346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for energy window optimization for quantitative tasks that includes the effects of model-mismatch on bias: application to Y-90 bremsstrahlung SPECT imaging.
    Rong X; Du Y; Frey EC
    Phys Med Biol; 2012 Jun; 57(12):3711-25. PubMed ID: 22617760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ISIT-QA: In Silico Imaging Trial to Evaluate a Low-Count Quantitative SPECT Method Across Multiple Scanner-Collimator Configurations for
    Li Z; Benabdallah N; Luo J; Wahl RL; Thorek DLJ; Jha AK
    J Nucl Med; 2024 May; 65(5):810-817. PubMed ID: 38575187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A projection image database to investigate factors affecting image quality in weight-based dosing: application to pediatric renal SPECT.
    Li Y; O'Reilly S; Plyku D; Treves ST; Du Y; Fahey F; Cao X; Jha AK; Sgouros G; Bolch WE; Frey EC
    Phys Med Biol; 2018 Jul; 63(14):145004. PubMed ID: 29893291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitatively accurate activity measurements with a dedicated cardiac SPECT camera: Physical phantom experiments.
    Pourmoghaddas A; Wells RG
    Med Phys; 2016 Jan; 43(1):44. PubMed ID: 26745898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification and reduction of the collimator-detector response effect in SPECT by applying a system model during iterative image reconstruction: a simulation study.
    Kalantari F; Rajabi H; Saghari M
    Nucl Med Commun; 2012 Mar; 33(3):228-38. PubMed ID: 22134173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.