BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 19292529)

  • 1. Photodissociation of the linear Ar-I2 van der Waals complex: velocity-map imaging of the I2 fragment.
    Zhang Y; Vidma K; Parker DH; Loomis RA
    J Chem Phys; 2009 Mar; 130(10):104302. PubMed ID: 19292529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging the rotationally state-selected NO(A,n) product from the predissociation of the A state of the NO-Ar van der Waals cluster.
    Roeterdink WG; Strecker KE; Hayden CC; Janssen MH; Chandler DW
    J Chem Phys; 2009 Apr; 130(13):134305. PubMed ID: 19355730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of bound-free transitions of the linear Ar...I2(X,v"=0) complex in and above the I2 B-X spectral region.
    Darr JP; Glennon JJ; Loomis RA
    J Chem Phys; 2005 Apr; 122(13):131101. PubMed ID: 15847447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cluster-enhanced X-O2 photochemistry (X=CH3I, C3H6, C6H12, and Xe).
    Baklanov AV; Bogdanchikov GA; Vidma KV; Chestakov DA; Parker DH
    J Chem Phys; 2007 Mar; 126(12):124316. PubMed ID: 17411132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photodissociation of van der Waals clusters of isoprene with oxygen, C5H8-O2, in the wavelength range 213-277 nm.
    Vidma KV; Frederix PW; Parker DH; Baklanov AV
    J Chem Phys; 2012 Aug; 137(5):054305. PubMed ID: 22894346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy transfer of highly vibrationally excited azulene. II. Photodissociation of azulene-Kr van der Waals clusters at 248 and 266 nm.
    Hsu HC; Liu CL; Lyu JJ; Ni CK
    J Chem Phys; 2006 Apr; 124(13):134303. PubMed ID: 16613451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultraviolet photodissociation of the van der Waals dimer (CH3I)2 revisited. II. Pathways giving rise to neutral molecular iodine.
    Vidma KV; Baklanov AV; Zhang Y; Parker DH
    J Chem Phys; 2006 Oct; 125(13):133303. PubMed ID: 17029456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photodissociation of (ICN)(2) van der Waals dimer using velocity imaging technique.
    Zhang XP; Lee WB; Zhao DF; Hsiao MK; Chen YL; Lin KC
    J Chem Phys; 2009 Jun; 130(21):214305. PubMed ID: 19508067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The photodissociation dynamics of N-nitrosopyrrolidine from the first and second excited singlet states studied by velocity map imaging.
    Wenge AM; Kensy U; Dick B
    Phys Chem Chem Phys; 2010 May; 12(18):4644-55. PubMed ID: 20428544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and theoretical studies of the CN-Ar van der Waals complex.
    Han J; Heaven MC; Schnupf U; Alexander MH
    J Chem Phys; 2008 Mar; 128(10):104308. PubMed ID: 18345889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UV photodissociation of the van der Waals dimer (CH3I)2 revisited: pathways giving rise to ionic features.
    Vidma KV; Baklanov AV; Khvorostov EB; Ishchenko VN; Kochubei SA; Eppink AT; Chestakov DA; Parker DH
    J Chem Phys; 2005 May; 122(20):204301. PubMed ID: 15945718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A velocity map imaging study of gold-rare gas complexes: Au-Ar, Au-Kr, and Au-Xe.
    Hopkins WS; Woodham AP; Plowright RJ; Wright TG; Mackenzie SR
    J Chem Phys; 2010 Jun; 132(21):214303. PubMed ID: 20528018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The photodissociation dynamics of ozone at 226 and 248 nm: O(3PJ) atomic angular momentum polarization.
    Brouard M; Goman A; Horrocks SJ; Johnsen AJ; Quadrini F; Yuen WH
    J Chem Phys; 2007 Oct; 127(14):144304. PubMed ID: 17935392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrationally mediated photodissociation of ethylene cation by reflectron multimass velocity map imaging.
    Kim MH; Leskiw BD; Suits AG
    J Phys Chem A; 2005 Sep; 109(35):7839-42. PubMed ID: 16834162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photodissociation of van der Waals complexes of iodine X-I
    Bogomolov AS; Goldort VG; Kochubei SA; Baklanov AV
    J Chem Phys; 2017 Dec; 147(23):234304. PubMed ID: 29272931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociative photodetachment studies of I2-.Ar: coincident imaging of two- and three-body product channels.
    Kautzman KE; Crider PE; Szpunar DE; Neumark DM
    J Phys Chem A; 2007 Dec; 111(49):12795-801. PubMed ID: 18027915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photodissociation of vibrationally excited SH and SD radicals at 288 and 291 nm: the S(1D2) channel.
    Janssen LM; van der Loo MP; Groenenboom GC; Wu SM; Radenović DC; van Roij AJ; Garcia IA; Parker DH
    J Chem Phys; 2007 Mar; 126(9):094304. PubMed ID: 17362106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum treatment of the Ar-HI photodissociation dynamics.
    López-López S; Prosmiti R; García-Vela A
    J Chem Phys; 2004 Jul; 121(4):1802-9. PubMed ID: 15260731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton formation dynamics in the REMPI[2+n] process via the F 1Delta2 and f 3Delta2 Rydberg states of HCl investigated by three-dimensional velocity mapping.
    Kauczok S; Maul C; Chichinin AI; Gericke KH
    J Chem Phys; 2010 Jul; 133(2):024301. PubMed ID: 20632749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully state-selected VMI study of the near-threshold photodissociation of NO(2): variation of the angular anisotropy parameter.
    Matthews SJ; Willitsch S; Softley TP
    Phys Chem Chem Phys; 2007 Nov; 9(42):5656-63. PubMed ID: 17960253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.