These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 19292534)

  • 1. State-resolved distribution of OH X 2Pi products arising from electronic quenching of OH A 2Sigma+ by N2.
    Dempsey LP; Sechler TD; Murray C; Lester MI; Matsika S
    J Chem Phys; 2009 Mar; 130(10):104307. PubMed ID: 19292534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum state distribution of the OH X(2)Pi products from collisional quenching of OH A(2)Sigma(+) by O2 and CO2.
    Dempsey LP; Sechler TD; Murray C; Lester MI
    J Phys Chem A; 2009 Jun; 113(25):6851-8. PubMed ID: 19480405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collisional quenching of OD A 2Σ+ by H2: experimental and theoretical studies of the state-resolved OD X 2Π product distribution and branching fraction.
    Lehman JH; Dempsey LP; Lester MI; Fu B; Kamarchik E; Bowman JM
    J Chem Phys; 2010 Oct; 133(16):164307. PubMed ID: 21033788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic quenching of OH A 2Sigma+ radicals in single collision events with H2 and D2: a comprehensive quantum state distribution of the OH X 2Pi products.
    Dempsey LP; Murray C; Cleary PA; Lester MI
    Phys Chem Chem Phys; 2008 Mar; 10(10):1424-32. PubMed ID: 18309399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic quenching of OH A 2Sigma+ radicals in single collision events with molecular hydrogen: quantum state distribution of the OH X 2Pi products.
    Cleary PA; Dempsey LP; Murray C; Lester MI; Kłos J; Alexander MH
    J Chem Phys; 2007 May; 126(20):204316. PubMed ID: 17552771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Product branching between reactive and nonreactive pathways in the collisional quenching of OH A 2Sigma+ radicals by H2.
    Dempsey LP; Murray C; Lester MI
    J Chem Phys; 2007 Oct; 127(15):151101. PubMed ID: 17949125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive quenching of OH A 2Σ+ by O2 and CO: experimental and nonadiabatic theoretical studies of H- and O-atom product channels.
    Lehman JH; Lester MI; Yarkony DR
    J Chem Phys; 2012 Sep; 137(9):094312. PubMed ID: 22957574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quenching of OH(A(2)Sigma(+)) by H(2) through conical intersections: highly excited products in nonreactive channel.
    Zhang PY; Lu RF; Chu TS; Han KL
    J Phys Chem A; 2010 Jun; 114(24):6565-8. PubMed ID: 20499943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonadiabatic quantum reactive scattering of the OH(A  2Σ+) + D2.
    Zhang PY; Lu RF; Chu TS; Han KL
    J Chem Phys; 2010 Nov; 133(17):174316. PubMed ID: 21054041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photochemistry of the water molecule: adiabatic versus nonadiabatic dynamics.
    Yuan K; Dixon RN; Yang X
    Acc Chem Res; 2011 May; 44(5):369-78. PubMed ID: 21428277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibrational distribution in NO(X2Pi) formed by self quenching of NO A 2Sigma+ (v=0).
    Hancock G; Saunders M
    Phys Chem Chem Phys; 2008 Apr; 10(15):2014-9. PubMed ID: 18688353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. State-to-state vibrational energy transfer in OH A2Sigma+ with N2.
    Sechler TD; Dempsey LP; Lester MI
    J Phys Chem A; 2009 Aug; 113(31):8845-51. PubMed ID: 19603759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic quenching of OH A 2Σ+ induced by collisions with Kr atoms.
    Lehman JH; Lester MI; Kłos J; Alexander MH; Dagdigian PJ; Herráez-Aguilar D; Aoiz FJ; Brouard M; Chadwick H; Perkins T; Seamons SA
    J Phys Chem A; 2013 Dec; 117(50):13481-90. PubMed ID: 23964894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonadiabatic reactive scattering in atom + triatom systems: nascent rovibronic distributions in F + H2O --> HF + OH.
    Ziemkiewicz M; Nesbitt DJ
    J Chem Phys; 2009 Aug; 131(5):054309. PubMed ID: 19673564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-dependent quantum wave-packet description of the 1pi sigma* photochemistry of phenol.
    Lan Z; Domcke W; Vallet V; Sobolewski AL; Mahapatra S
    J Chem Phys; 2005 Jun; 122(22):224315. PubMed ID: 15974676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodissociation dynamics of phenol.
    Tseng CM; Lee YT; Lin MF; Ni CK; Liu SY; Lee YP; Xu ZF; Lin MC
    J Phys Chem A; 2007 Sep; 111(38):9463-70. PubMed ID: 17691716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of OH radical generation in laser-induced photodissociation of tetrahydropyran at 193 nm.
    SenGupta S; Upadhyaya HP; Kumar A; Naik PD; Bajaj P
    J Chem Phys; 2006 Jan; 124(2):024305. PubMed ID: 16422581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissociation dynamics of thiolactic acid at 193 nm: detection of the nascent OH product by laser-induced fluorescence.
    Pushpa KK; Upadhyaya HP; Kumar A; Naik PD; Bajaj P; Mittal JP
    J Chem Phys; 2004 Apr; 120(15):6964-72. PubMed ID: 15267595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steric effect in the energy transfer reaction of oriented CO (a 3Π, v'=0, Ω=1 and 2) + NO (X 2Π) → NO (A 2Σ+, B 2Π) + CO (X 1Σ+).
    Ohoyama H; Matsuura Y
    J Phys Chem A; 2011 Jul; 115(28):8055-63. PubMed ID: 21671684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-ultraviolet photodissociation of thiophenol.
    Devine AL; Nix MG; Dixon RN; Ashfold MN
    J Phys Chem A; 2008 Oct; 112(39):9563-74. PubMed ID: 18588271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.