BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 19292541)

  • 1. Calculations of the thermal conductivities of ionic materials by simulation with polarizable interaction potentials.
    Ohtori N; Salanne M; Madden PA
    J Chem Phys; 2009 Mar; 130(10):104507. PubMed ID: 19292541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal conductivity of ionic systems from equilibrium molecular dynamics.
    Salanne M; Marrocchelli D; Merlet C; Ohtori N; Madden PA
    J Phys Condens Matter; 2011 Mar; 23(10):102101. PubMed ID: 21335634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal conductivity of methane hydrate from experiment and molecular simulation.
    Rosenbaum EJ; English NJ; Johnson JK; Shaw DW; Warzinski RP
    J Phys Chem B; 2007 Nov; 111(46):13194-205. PubMed ID: 17967008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal conductivity of molten alkali halides from equilibrium molecular dynamics simulations.
    Galamba N; Nieto de Castro CA; Ely JF
    J Chem Phys; 2004 May; 120(18):8676-82. PubMed ID: 15267797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conductivity of molten alkali halides: Temperature and density dependence.
    Ohtori N; Oono T; Takase K
    J Chem Phys; 2009 Jan; 130(4):044505. PubMed ID: 19191396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio based polarizable force field parametrization.
    Masia M
    J Chem Phys; 2008 May; 128(18):184107. PubMed ID: 18532799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Condensed phase ionic polarizabilities from plane wave density functional theory calculations.
    Heaton RJ; Madden PA; Clark SJ; Jahn S
    J Chem Phys; 2006 Oct; 125(14):144104. PubMed ID: 17042576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman spectra of ionic liquids: interpretation via computer simulation.
    Madden PA; Wilson M; Hutchinson F
    J Chem Phys; 2004 Apr; 120(14):6609-20. PubMed ID: 15267553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First principles molecular dynamics of molten NaCl.
    Galamba N; Costa Cabral BJ
    J Chem Phys; 2007 Mar; 126(12):124502. PubMed ID: 17411139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gradients of the polarization energy in the effective fragment potential method.
    Li H; Netzloff HM; Gordon MS
    J Chem Phys; 2006 Nov; 125(19):194103. PubMed ID: 17129085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of intermolecular pair potential model of SiH4: molecular-dynamics simulation for saturated liquid density and thermal transport properties.
    Sakiyama Y; Takagi S; Matsumoto Y
    J Chem Phys; 2005 Jun; 122(23):234501. PubMed ID: 16008456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of complex classical force fields through force matching to ab initio data: application to a room-temperature ionic liquid.
    Youngs TG; Del Pópolo MG; Kohanoff J
    J Phys Chem B; 2006 Mar; 110(11):5697-707. PubMed ID: 16539515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of the transport properties of carbon dioxide. II. Thermal conductivity and thermomagnetic effects.
    Bock S; Bich E; Vogel E; Dickinson AS; Vesovic V
    J Chem Phys; 2004 May; 120(17):7987-97. PubMed ID: 15267716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equilibrium and nonequilibrium molecular dynamics simulations of the thermal conductivity of molten alkali halides.
    Galamba N; Nieto de Castro CA; Ely JF
    J Chem Phys; 2007 May; 126(20):204511. PubMed ID: 17552782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing polarizable force fields to ab initio calculations reveals nonclassical effects in condensed phases.
    Chelli R; Schettino V; Procacci P
    J Chem Phys; 2005 Jun; 122(23):234107. PubMed ID: 16008430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical conductivity of mixed electrolytes: Modeling within the mean spherical approximation.
    Roger GM; Durand-Vidal S; Bernard O; Turq P
    J Phys Chem B; 2009 Jun; 113(25):8670-4. PubMed ID: 19485401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics study of polarizable ion models for molten AgBr.
    Bitrian V; Trullàs J
    J Phys Chem B; 2006 Apr; 110(14):7490-9. PubMed ID: 16599529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Many-body potentials for aqueous Li(+), Na(+), Mg(2+), and Al(3+): comparison of effective three-body potentials and polarizable models.
    Spångberg D; Hermansson K
    J Chem Phys; 2004 Mar; 120(10):4829-43. PubMed ID: 15267343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A first-principles description of liquid BeF2 and its mixtures with LiF: 1. Potential development and pure BeF2.
    Heaton RJ; Brookes R; Madden PA; Salanne M; Simon C; Turq P
    J Phys Chem B; 2006 Jun; 110(23):11454-60. PubMed ID: 16771419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Key role of the polarization anisotropy of water in modeling classical polarizable force fields.
    Piquemal JP; Chelli R; Procacci P; Gresh N
    J Phys Chem A; 2007 Aug; 111(33):8170-6. PubMed ID: 17665882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.