These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 19293099)

  • 21. Visual landmarks facilitate rodent spatial navigation in virtual reality environments.
    Youngstrom IA; Strowbridge BW
    Learn Mem; 2012 Feb; 19(3):84-90. PubMed ID: 22345484
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence against integration of spatial maps in humans: generality across real and virtual environments.
    Sturz BR; Bodily KD; Katz JS; Kelly DM
    Anim Cogn; 2009 Mar; 12(2):237-47. PubMed ID: 18766392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Active navigation and orientation-free spatial representations.
    Sun HJ; Chan GS; Campos JL
    Mem Cognit; 2004 Jan; 32(1):51-71. PubMed ID: 15078044
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Competition among spatial cues in a naturalistic food-carrying task.
    Gibson BM; Shettleworth SJ
    Learn Behav; 2003 May; 31(2):143-59. PubMed ID: 12882373
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-dimensional and multi-dimensional studies of the exocentric distance estimates in frontoparallel plane, virtual space, and outdoor open field.
    Aznar-Casanova JA; Matsushima EH; Ribeiro-Filho NP; Da Silva JA
    Span J Psychol; 2006 Nov; 9(2):273-84. PubMed ID: 17120706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial information transfer from virtual to real versions of the Kiel locomotor maze.
    Foreman N; Stirk J; Pohl J; Mandelkow L; Lehnung M; Herzog A; Leplow B
    Behav Brain Res; 2000 Jul; 112(1-2):53-61. PubMed ID: 10862935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of local visual cues for spatial orientation in terrestrial toads (Rhinella arenarum): The role of distance to a goal.
    Daneri MF; Casanave EB; Muzio RN
    J Comp Psychol; 2015 Aug; 129(3):247-55. PubMed ID: 26147701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial association learning by rufous hummingbirds (Selasphorus rufus): effects of relative spacing among stimuli.
    Brown GS
    J Comp Psychol; 1994 Mar; 108(1):29-35. PubMed ID: 8174343
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The nesting of search contexts within natural scenes: evidence from contextual cuing.
    Brooks DI; Rasmussen IP; Hollingworth A
    J Exp Psychol Hum Percept Perform; 2010 Dec; 36(6):1406-18. PubMed ID: 20731525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Individual differences in using geometric and featural cues to maintain spatial orientation: cue quantity and cue ambiguity are more important than cue type.
    Kelly JW; McNamara TP; Bodenheimer B; Carr TH; Rieser JJ
    Psychon Bull Rev; 2009 Feb; 16(1):176-81. PubMed ID: 19145030
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Learning associations between places and visual cues without learning to navigate: neither fornix nor entorhinal cortex is required.
    Gaffan EA; Bannerman DM; Healey AN
    Hippocampus; 2003; 13(4):445-60. PubMed ID: 12836914
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hippocampus is necessary for spatial discrimination using distal cue-configuration.
    Kim J; Lee I
    Hippocampus; 2011 Jun; 21(6):609-21. PubMed ID: 20623761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The 36th Sir Frederick Bartlett lecture: an associative analysis of spatial learning.
    Pearce JM
    Q J Exp Psychol (Hove); 2009 Sep; 62(9):1665-84. PubMed ID: 19418377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Learning fine-grained and category information in navigable real-world space.
    Uttal DH; Friedman A; Hand LL; Warren C
    Mem Cognit; 2010 Dec; 38(8):1026-40. PubMed ID: 21156867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acquisition and transfer of spatial knowledge during wayfinding.
    He Q; McNamara TP; Bodenheimer B; Klippel A
    J Exp Psychol Learn Mem Cogn; 2019 Aug; 45(8):1364-1386. PubMed ID: 30124310
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial relational memory in 9-month-old macaque monkeys.
    Lavenex P; Lavenex PB
    Learn Mem; 2006; 13(1):84-96. PubMed ID: 16418438
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The footprints of visual attention during search with 100% valid and 100% invalid cues.
    Eckstein MP; Pham BT; Shimozaki SS
    Vision Res; 2004 Jun; 44(12):1193-207. PubMed ID: 15066385
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of cue placement on the relative dominance of boundaries and landmark arrays in goal localization.
    Zhou R; Mou W
    Q J Exp Psychol (Hove); 2019 Nov; 72(11):2614-2631. PubMed ID: 31104568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Landmark stability: further studies pointing to a role in spatial learning.
    Biegler R; Morris RG
    Q J Exp Psychol B; 1996 Nov; 49(4):307-45. PubMed ID: 8962538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cue integration in spatial search for jointly learned landmarks but not for separately learned landmarks.
    Du Y; McMillan N; Madan CR; Spetch ML; Mou W
    J Exp Psychol Learn Mem Cogn; 2017 Dec; 43(12):1857-1871. PubMed ID: 28504533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.