These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 1929324)

  • 1. Physiological effects of fenpropimorph on wild-type Saccharomyces cerevisiae and fenpropimorph-resistant mutants.
    Lorenz RT; Parks LW
    Antimicrob Agents Chemother; 1991 Aug; 35(8):1532-7. PubMed ID: 1929324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fenpropimorph affects uptake of uracil and cytosine in Saccharomyces cerevisiae.
    Crowley JH; Lorenz RT; Parks LW
    Antimicrob Agents Chemother; 1994 May; 38(5):1004-7. PubMed ID: 8067730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the role of sterol delta 8-->7-isomerase in the sensitivity of Saccharomyces cerevisiae to fenpropimorph.
    Kelly DE; Rose ME; Kelly SL
    FEMS Microbiol Lett; 1994 Oct; 122(3):223-6. PubMed ID: 7988864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo effects of fenpropimorph on the yeast Saccharomyces cerevisiae and determination of the molecular basis of the antifungal property.
    Marcireau C; Guilloton M; Karst F
    Antimicrob Agents Chemother; 1990 Jun; 34(6):989-93. PubMed ID: 2203312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic analysis of resistance to fenpropimorph in Aspergillus niger.
    Engels AJ; Holub EF; Swart K; De Waard MA
    Curr Genet; 1998 Feb; 33(2):145-50. PubMed ID: 9506903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of new fenpropimorph fungicides on the growth and sterol composition in Saccharomyces cerevisiae: relationship between structure and activity.
    Sajbidor J; Lamacka M; Baláz S; Huong LM; Ciesarova Z
    J Pharm Pharmacol; 1998 Mar; 50(3):297-301. PubMed ID: 9600722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General resistance to sterol biosynthesis inhibitors in Saccharomyces cerevisiae.
    Ladevèze V; Marcireau C; Delourme D; Karst F
    Lipids; 1993 Oct; 28(10):907-12. PubMed ID: 8246690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The action of the systemic fungicides tridemorph and fenpropimorph on sterol biosynthesis by the soil amoeba Acanthamoeba polyphaga.
    Raederstorff D; Rohmer M
    Eur J Biochem; 1987 Apr; 164(2):421-6. PubMed ID: 3569273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fenpropimorph resistance gene FEN2 from Saccharomyces cerevisiae encodes a plasma membrane H+-pantothenate symporter.
    Stolz J; Sauer N
    J Biol Chem; 1999 Jun; 274(26):18747-52. PubMed ID: 10373490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between antifungal activity and inhibition of sterol biosynthesis in miconazole, clotrimazole, and 15-azasterol.
    Taylor FR; Rodriguez RJ; Parks LW
    Antimicrob Agents Chemother; 1983 Apr; 23(4):515-21. PubMed ID: 6344784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of some sterol-biosynthesis-inhibiting fungicides on the biosynthesis of polyisoprenoid compounds in barley seedings.
    Mercer EI; Khalil IA; Wang ZX
    Steroids; 1989; 53(3-5):393-412. PubMed ID: 2799851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirement for a second sterol biosynthetic mutation for viability of a sterol C-14 demethylation defect in Saccharomyces cerevisiae.
    Taylor FR; Rodriguez RJ; Parks LW
    J Bacteriol; 1983 Jul; 155(1):64-8. PubMed ID: 6345514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of nystatin-resistant mutants of Saccharomyces cerevisiae and preparation of sterol intermediates using the mutants.
    Nakanishi S; Nishino T; Nagai J; Katsuki H
    J Biochem; 1987 Feb; 101(2):535-44. PubMed ID: 3294819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of fluconazole sensitivity by the interaction of mitochondria and erg3p in Saccharomyces cerevisiae.
    Kontoyiannis DP
    J Antimicrob Chemother; 2000 Aug; 46(2):191-7. PubMed ID: 10933640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of fenpropimorph and fenhexamid, two sterol biosynthesis inhibitor fungicides, on arbuscular mycorrhizal development and sterol metabolism in carrot roots.
    Campagnac E; Fontaine J; Sahraoui AL; Laruelle F; Durand R; Grandmougin-Ferjani A
    Phytochemistry; 2008 Dec; 69(17):2912-9. PubMed ID: 19007946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The identification of a gene family in the Saccharomyces cerevisiae ergosterol biosynthesis pathway.
    Lai MH; Bard M; Pierson CA; Alexander JF; Goebl M; Carter GT; Kirsch DR
    Gene; 1994 Mar; 140(1):41-9. PubMed ID: 8125337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a Saccharomyces cerevisiae mutant, N22, defective in ergosterol synthesis and preparation of [28-14C]ergosta-5,7-dien-3 beta-ol with the mutant.
    Hata S; Oda Y; Nishino T; Katsuki H; Aoyama Y; Yoshida Y; Nagai J
    J Biochem; 1983 Aug; 94(2):501-10. PubMed ID: 6355078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition by the fungicide fenpropimorph of cholesterol biosynthesis in 3T3 fibroblasts.
    Corio-Costet MF; Gerst N; Benveniste P; Schuber F
    Biochem J; 1988 Dec; 256(3):829-34. PubMed ID: 3223956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defective sterol C5-6 desaturation and azole resistance: a new hypothesis for the mode of action of azole antifungals.
    Watson PF; Rose ME; Ellis SW; England H; Kelly SL
    Biochem Biophys Res Commun; 1989 Nov; 164(3):1170-5. PubMed ID: 2556119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility.
    Geber A; Hitchcock CA; Swartz JE; Pullen FS; Marsden KE; Kwon-Chung KJ; Bennett JE
    Antimicrob Agents Chemother; 1995 Dec; 39(12):2708-17. PubMed ID: 8593007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.