BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19293338)

  • 1. Molecular mechanisms for subtelomeric rearrangements associated with the 9q34.3 microdeletion syndrome.
    Yatsenko SA; Brundage EK; Roney EK; Cheung SW; Chinault AC; Lupski JR
    Hum Mol Genet; 2009 Jun; 18(11):1924-36. PubMed ID: 19293338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse mutational mechanisms cause pathogenic subtelomeric rearrangements.
    Luo Y; Hermetz KE; Jackson JM; Mulle JG; Dodd A; Tsuchiya KD; Ballif BC; Shaffer LG; Cody JD; Ledbetter DH; Martin CL; Rudd MK
    Hum Mol Genet; 2011 Oct; 20(19):3769-78. PubMed ID: 21729882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translocation breakpoint mapping and sequence analysis in three monosomy 1p36 subjects with der(1)t(1;1)(p36;q44) suggest mechanisms for telomere capture in stabilizing de novo terminal rearrangements.
    Ballif BC; Wakui K; Gajecka M; Shaffer LG
    Hum Genet; 2004 Jan; 114(2):198-206. PubMed ID: 14579147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human subtelomeric copy number gains suggest a DNA replication mechanism for formation: beyond breakage-fusion-bridge for telomere stabilization.
    Yatsenko SA; Hixson P; Roney EK; Scott DA; Schaaf CP; Ng YT; Palmer R; Fisher RB; Patel A; Cheung SW; Lupski JR
    Hum Genet; 2012 Dec; 131(12):1895-910. PubMed ID: 22890305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanisms generating and stabilizing terminal 22q13 deletions in 44 subjects with Phelan/McDermid syndrome.
    Bonaglia MC; Giorda R; Beri S; De Agostini C; Novara F; Fichera M; Grillo L; Galesi O; Vetro A; Ciccone R; Bonati MT; Giglio S; Guerrini R; Osimani S; Marelli S; Zucca C; Grasso R; Borgatti R; Mani E; Motta C; Molteni M; Romano C; Greco D; Reitano S; Baroncini A; Lapi E; Cecconi A; Arrigo G; Patricelli MG; Pantaleoni C; D'Arrigo S; Riva D; Sciacca F; Dalla Bernardina B; Zoccante L; Darra F; Termine C; Maserati E; Bigoni S; Priolo E; Bottani A; Gimelli S; Bena F; Brusco A; di Gregorio E; Bagnasco I; Giussani U; Nitsch L; Politi P; Martinez-Frias ML; Martínez-Fernández ML; Martínez Guardia N; Bremer A; Anderlid BM; Zuffardi O
    PLoS Genet; 2011 Jul; 7(7):e1002173. PubMed ID: 21779178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a complex rearrangement with interstitial deletions and inversion on human chromosome 1.
    Gajecka M; Glotzbach CD; Shaffer LG
    Chromosome Res; 2006; 14(3):277-82. PubMed ID: 16628498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monosomy 1p36 breakpoint junctions suggest pre-meiotic breakage-fusion-bridge cycles are involved in generating terminal deletions.
    Ballif BC; Yu W; Shaw CA; Kashork CD; Shaffer LG
    Hum Mol Genet; 2003 Sep; 12(17):2153-65. PubMed ID: 12915474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosome instability as a result of double-strand breaks near telomeres in mouse embryonic stem cells.
    Lo AW; Sprung CN; Fouladi B; Pedram M; Sabatier L; Ricoul M; Reynolds GE; Murnane JP
    Mol Cell Biol; 2002 Jul; 22(13):4836-50. PubMed ID: 12052890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further delineation of nonhomologous-based recombination and evidence for subtelomeric segmental duplications in 1p36 rearrangements.
    D'Angelo CS; Gajecka M; Kim CA; Gentles AJ; Glotzbach CD; Shaffer LG; Koiffmann CP
    Hum Genet; 2009 Jun; 125(5-6):551-63. PubMed ID: 19271239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous duplications in patients with Pelizaeus-Merzbacher disease suggest a mechanism of coupled homologous and nonhomologous recombination.
    Woodward KJ; Cundall M; Sperle K; Sistermans EA; Ross M; Howell G; Gribble SM; Burford DC; Carter NP; Hobson DL; Garbern JY; Kamholz J; Heng H; Hodes ME; Malcolm S; Hobson GM
    Am J Hum Genet; 2005 Dec; 77(6):966-87. PubMed ID: 16380909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fine-mapping subtelomeric deletions and duplications by comparative genomic hybridization in 42 individuals.
    DeScipio C; Spinner NB; Kaur M; Yaeger D; Conlin LK; Ambrosini A; Hu S; Shan S; Krantz ID; Riethman H
    Am J Med Genet A; 2008 Mar; 146A(6):730-9. PubMed ID: 18257100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterisation of a mosaicism with a complex chromosome rearrangement: evidence for coincident chromosome healing by telomere capture and neo-telomere formation.
    Chabchoub E; Rodríguez L; Galán E; Mansilla E; Martínez-Fernandez ML; Martínez-Frías ML; Fryns JP; Vermeesch JR
    J Med Genet; 2007 Apr; 44(4):250-6. PubMed ID: 17172463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Familial Kleefstra syndrome due to maternal somatic mosaicism for interstitial 9q34.3 microdeletions.
    Willemsen MH; Beunders G; Callaghan M; de Leeuw N; Nillesen WM; Yntema HG; van Hagen JM; Nieuwint AW; Morrison N; Keijzers-Vloet ST; Hoischen A; Brunner HG; Tolmie J; Kleefstra T
    Clin Genet; 2011 Jul; 80(1):31-8. PubMed ID: 21204793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of complex genomic breakpoint junctions in the t(9;11) MLL-AF9 fusion gene in acute leukemia.
    Super HG; Strissel PL; Sobulo OM; Burian D; Reshmi SC; Roe B; Zeleznik-Le NJ; Diaz MO; Rowley JD
    Genes Chromosomes Cancer; 1997 Oct; 20(2):185-95. PubMed ID: 9331569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different molecular mechanisms causing 9p21 deletions in acute lymphoblastic leukemia of childhood.
    Novara F; Beri S; Bernardo ME; Bellazzi R; Malovini A; Ciccone R; Cometa AM; Locatelli F; Giorda R; Zuffardi O
    Hum Genet; 2009 Oct; 126(4):511-20. PubMed ID: 19484265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse chromosome breakage mechanisms underlie subtelomeric rearrangements, a common cause of mental retardation.
    Rooms L; Reyniers E; Kooy RF
    Hum Mutat; 2007 Feb; 28(2):177-82. PubMed ID: 16991117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype.
    Kleefstra T; van Zelst-Stams WA; Nillesen WM; Cormier-Daire V; Houge G; Foulds N; van Dooren M; Willemsen MH; Pfundt R; Turner A; Wilson M; McGaughran J; Rauch A; Zenker M; Adam MP; Innes M; Davies C; López AG; Casalone R; Weber A; Brueton LA; Navarro AD; Bralo MP; Venselaar H; Stegmann SP; Yntema HG; van Bokhoven H; Brunner HG
    J Med Genet; 2009 Sep; 46(9):598-606. PubMed ID: 19264732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ring chromosome formation by intra-strand repairing of subtelomeric double stand breaks and clinico-cytogenomic correlations for ring chromosome 9.
    Chai H; Ji W; Wen J; DiAdamo A; Grommisch B; Hu Q; Szekely AM; Li P
    Am J Med Genet A; 2020 Dec; 182(12):3023-3028. PubMed ID: 32978894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subtelomeric deletions of chromosome 9q: a novel microdeletion syndrome.
    Stewart DR; Huang A; Faravelli F; Anderlid BM; Medne L; Ciprero K; Kaur M; Rossi E; Tenconi R; Nordenskjöld M; Gripp KW; Nicholson L; Meschino WS; Capua E; Quarrell OW; Flint J; Irons M; Giampietro PF; Schowalter DB; Zaleski CA; Malacarne M; Zackai EH; Spinner NB; Krantz ID
    Am J Med Genet A; 2004 Aug; 128A(4):340-51. PubMed ID: 15264279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Subtelomeric deletion 9qter: definition of the syndrome and parental origin in 2 patients].
    Roselló M; Monfort S; Orellana C; Oltra S; Martínez Garay I; Martínez F
    Med Clin (Barc); 2007 Mar; 128(11):419-21. PubMed ID: 17394858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.