These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 1929360)
21. A novel technique that enables efficient conduct of simultaneous isomerization and fermentation (SIF) of xylose. Rao K; Chelikani S; Relue P; Varanasi S Appl Biochem Biotechnol; 2008 Mar; 146(1-3):101-17. PubMed ID: 18421591 [TBL] [Abstract][Full Text] [Related]
22. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. Choudhary J; Singh S; Nain L J Biosci Bioeng; 2017 Mar; 123(3):342-346. PubMed ID: 27856231 [TBL] [Abstract][Full Text] [Related]
23. [The activity of xylose reductase and xylitol dehydrogenase in yeasts]. Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI Mikrobiologiia; 2003; 72(4):466-9. PubMed ID: 14526534 [TBL] [Abstract][Full Text] [Related]
24. Effect of nitrogen sources on oxidoreductive enzymes and ethanol production during D-xylose fermentation by Candida shehatae. Palnitkar S; Lachke A Can J Microbiol; 1992 Mar; 38(3):258-60. PubMed ID: 1393828 [TBL] [Abstract][Full Text] [Related]
25. Regulation of phosphotransferases in glucose- and xylose-fermenting yeasts. Yang VW; Jeffries TW Appl Biochem Biotechnol; 1997; 63-65():97-108. PubMed ID: 9170243 [TBL] [Abstract][Full Text] [Related]
26. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Walfridsson M; Bao X; Anderlund M; Lilius G; Bülow L; Hahn-Hägerdal B Appl Environ Microbiol; 1996 Dec; 62(12):4648-51. PubMed ID: 8953736 [TBL] [Abstract][Full Text] [Related]
27. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. Smith J; van Rensburg E; Görgens JF BMC Biotechnol; 2014 May; 14():41. PubMed ID: 24884721 [TBL] [Abstract][Full Text] [Related]
28. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Kwak S; Jin YS Microb Cell Fact; 2017 May; 16(1):82. PubMed ID: 28494761 [TBL] [Abstract][Full Text] [Related]
29. Metabolic pathway analysis of the xylose-metabolizing yeast protoplast fusant ZLYRHZ7. Ge J; Du R; Song G; Zhang Y; Ping W J Biosci Bioeng; 2017 Oct; 124(4):386-391. PubMed ID: 28527826 [TBL] [Abstract][Full Text] [Related]
30. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. Kim SR; Kwee NR; Kim H; Jin YS FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717 [TBL] [Abstract][Full Text] [Related]
31. A wild and tolerant yeast suitable for ethanol fermentation from lignocellulose. Kodama S; Nakanishi H; Thalagala TA; Isono N; Hisamatsu M J Biosci Bioeng; 2013 May; 115(5):557-61. PubMed ID: 23273910 [TBL] [Abstract][Full Text] [Related]
32. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Karhumaa K; Fromanger R; Hahn-Hägerdal B; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2007 Jan; 73(5):1039-46. PubMed ID: 16977466 [TBL] [Abstract][Full Text] [Related]
33. Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Chandrakant P; Bisaria VS Crit Rev Biotechnol; 1998; 18(4):295-331. PubMed ID: 9887507 [TBL] [Abstract][Full Text] [Related]
34. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Parawira W; Tekere M Crit Rev Biotechnol; 2011 Mar; 31(1):20-31. PubMed ID: 20513164 [TBL] [Abstract][Full Text] [Related]
35. Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress. Ko JK; Um Y; Lee SM Bioresour Technol; 2016 Dec; 222():422-430. PubMed ID: 27744166 [TBL] [Abstract][Full Text] [Related]
36. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. Hasunuma T; Ismail KSK; Nambu Y; Kondo A J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856 [TBL] [Abstract][Full Text] [Related]
37. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. Madhavan A; Srivastava A; Kondo A; Bisaria VS Crit Rev Biotechnol; 2012 Mar; 32(1):22-48. PubMed ID: 21204601 [TBL] [Abstract][Full Text] [Related]
38. Genetic improvement of Saccharomyces cerevisiae for ethanol production from xylose. Tantirungkij M; Seki T; Yoshida T Ann N Y Acad Sci; 1994 May; 721():138-47. PubMed ID: 8010664 [No Abstract] [Full Text] [Related]
39. Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution. Diao L; Liu Y; Qian F; Yang J; Jiang Y; Yang S BMC Biotechnol; 2013 Dec; 13():110. PubMed ID: 24354503 [TBL] [Abstract][Full Text] [Related]
40. Fermentation of D-xylose, xylitol, and D-xylulose by yeasts. Maleszka R; Schneider H Can J Microbiol; 1982 Mar; 28(3):360-3. PubMed ID: 6211222 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]