These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 1929360)
41. Xylulose fermentation by Saccharomyces cerevisiae and xylose-fermenting yeast strains. Yu S; Jeppsson H; Hahn-Hägerdal B Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):314-20. PubMed ID: 8597536 [TBL] [Abstract][Full Text] [Related]
42. Co-expression of xylose reductase gene from Candida shehatae and endogenous xylitol dehydrogenase gene in Saccharomyces cerevisiae and the effect of metabolizing xylose to ethanol. Zhang J; Yang M; Tian S; Zhang Y; Yang X Prikl Biokhim Mikrobiol; 2010; 46(4):456-61. PubMed ID: 20873171 [TBL] [Abstract][Full Text] [Related]
43. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Lee SH; Kodaki T; Park YC; Seo JH J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927 [TBL] [Abstract][Full Text] [Related]
44. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Zhou H; Cheng JS; Wang BL; Fink GR; Stephanopoulos G Metab Eng; 2012 Nov; 14(6):611-22. PubMed ID: 22921355 [TBL] [Abstract][Full Text] [Related]
45. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation. Romaní A; Pereira F; Johansson B; Domingues L Bioresour Technol; 2015 Mar; 179():150-158. PubMed ID: 25536512 [TBL] [Abstract][Full Text] [Related]
46. Sugar consumption and ethanol fermentation by transporter-overexpressed xylose-metabolizing Saccharomyces cerevisiae harboring a xyloseisomerase pathway. Tanino T; Ito T; Ogino C; Ohmura N; Ohshima T; Kondo A J Biosci Bioeng; 2012 Aug; 114(2):209-11. PubMed ID: 22591844 [TBL] [Abstract][Full Text] [Related]
47. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361 [TBL] [Abstract][Full Text] [Related]
48. Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Rudolf A; Baudel H; Zacchi G; Hahn-Hägerdal B; Lidén G Biotechnol Bioeng; 2008 Mar; 99(4):783-90. PubMed ID: 17787015 [TBL] [Abstract][Full Text] [Related]
49. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? Kuyper M; Harhangi HR; Stave AK; Winkler AA; Jetten MS; de Laat WT; den Ridder JJ; Op den Camp HJ; van Dijken JP; Pronk JT FEMS Yeast Res; 2003 Oct; 4(1):69-78. PubMed ID: 14554198 [TBL] [Abstract][Full Text] [Related]
50. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Gonçalves DL; Matsushika A; de Sales BB; Goshima T; Bon EP; Stambuk BU Enzyme Microb Technol; 2014 Sep; 63():13-20. PubMed ID: 25039054 [TBL] [Abstract][Full Text] [Related]
51. Enhanced ethanol production from industrial lignocellulose hydrolysates by a hydrolysate-cofermenting Saccharomyces cerevisiae strain. Huang S; Liu T; Peng B; Geng A Bioprocess Biosyst Eng; 2019 May; 42(5):883-896. PubMed ID: 30820665 [TBL] [Abstract][Full Text] [Related]
52. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Pitkänen JP; Rintala E; Aristidou A; Ruohonen L; Penttilä M Appl Microbiol Biotechnol; 2005 Jun; 67(6):827-37. PubMed ID: 15630585 [TBL] [Abstract][Full Text] [Related]
53. [Specific features of fermentation of D-xylose and D-glucose by xylose-assimilating yeasts]. Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI Prikl Biokhim Mikrobiol; 2003; 39(3):302-6. PubMed ID: 12754827 [TBL] [Abstract][Full Text] [Related]
54. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Demeke MM; Dietz H; Li Y; Foulquié-Moreno MR; Mutturi S; Deprez S; Den Abt T; Bonini BM; Liden G; Dumortier F; Verplaetse A; Boles E; Thevelein JM Biotechnol Biofuels; 2013 Jun; 6(1):89. PubMed ID: 23800147 [TBL] [Abstract][Full Text] [Related]
55. An innovative biocatalyst for production of ethanol from xylose in a continuous bioreactor. Silva CR; Zangirolami TC; Rodrigues JP; Matugi K; Giordano RC; Giordano RL Enzyme Microb Technol; 2012 Jan; 50(1):35-42. PubMed ID: 22133438 [TBL] [Abstract][Full Text] [Related]
56. Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation. Ota M; Sakuragi H; Morisaka H; Kuroda K; Miyake H; Tamaru Y; Ueda M Biotechnol Prog; 2013; 29(2):346-51. PubMed ID: 23359609 [TBL] [Abstract][Full Text] [Related]
57. Sequential incubation of Candida shehatae and ethanol-tolerant yeast cells for efficient ethanol production from a mixture of glucose, xylose and cellobiose. Guan D; Li Y; Shiroma R; Ike M; Tokuyasu K Bioresour Technol; 2013 Mar; 132():419-22. PubMed ID: 23280092 [TBL] [Abstract][Full Text] [Related]
58. Efficient simultaneous saccharification and fermentation of agricultural residues by Saccharomyces cerevisiae and Candida shehatae. The D-xylose fermenting yeast. Palnitkar SS; Lachke AH Appl Biochem Biotechnol; 1990 Nov; 26(2):151-8. PubMed ID: 2091527 [TBL] [Abstract][Full Text] [Related]
59. Alcoholic glucose and xylose fermentations by the coculture process: compatibility and typing of associated strains. Laplace JM; Delgenes JP; Moletta R; Navarro JM Can J Microbiol; 1992 Jul; 38(7):654-8. PubMed ID: 1393834 [TBL] [Abstract][Full Text] [Related]
60. Xylose consumption and ethanol production by Pichia guilliermondii and Candida oleophila in the presence of furans, phenolic compounds, and organic acids commonly produced during the pre-treatment of plant biomass. da Silva RR; Zaiter MA; Boscolo M; da Silva R; Gomes E Braz J Microbiol; 2023 Jun; 54(2):753-759. PubMed ID: 36826705 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]