These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 19293774)

  • 1. The pharmacological chaperone N-butyldeoxynojirimycin enhances enzyme replacement therapy in Pompe disease fibroblasts.
    Porto C; Cardone M; Fontana F; Rossi B; Tuzzi MR; Tarallo A; Barone MV; Andria G; Parenti G
    Mol Ther; 2009 Jun; 17(6):964-71. PubMed ID: 19293774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergy between the pharmacological chaperone 1-deoxygalactonojirimycin and the human recombinant alpha-galactosidase A in cultured fibroblasts from patients with Fabry disease.
    Porto C; Pisani A; Rosa M; Acampora E; Avolio V; Tuzzi MR; Visciano B; Gagliardo C; Materazzi S; la Marca G; Andria G; Parenti G
    J Inherit Metab Dis; 2012 May; 35(3):513-20. PubMed ID: 22187137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A chaperone enhances blood α-glucosidase activity in Pompe disease patients treated with enzyme replacement therapy.
    Parenti G; Fecarotta S; la Marca G; Rossi B; Ascione S; Donati MA; Morandi LO; Ravaglia S; Pichiecchio A; Ombrone D; Sacchini M; Pasanisi MB; De Filippi P; Danesino C; Della Casa R; Romano A; Mollica C; Rosa M; Agovino T; Nusco E; Porto C; Andria G
    Mol Ther; 2014 Nov; 22(11):2004-12. PubMed ID: 25052852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme enhancers for the treatment of Fabry and Pompe disease.
    Lukas J; Pockrandt AM; Seemann S; Sharif M; Runge F; Pohlers S; Zheng C; Gläser A; Beller M; Rolfs A; Giese AK
    Mol Ther; 2015 Mar; 23(3):456-64. PubMed ID: 25409744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacological chaperone corrects lysosomal storage in Fabry disease caused by trafficking-incompetent variants.
    Yam GH; Bosshard N; Zuber C; Steinmann B; Roth J
    Am J Physiol Cell Physiol; 2006 Apr; 290(4):C1076-82. PubMed ID: 16531566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 5-
    Kato A; Nakagome I; Kanekiyo U; Lu TT; Li YX; Yoshimura K; Kishida M; Shinzawa K; Yoshida T; Tanaka N; Jia YM; Nash RJ; Fleet GWJ; Yu CY
    J Med Chem; 2022 Feb; 65(3):2329-2341. PubMed ID: 35072486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pharmacological chaperone 1-deoxynojirimycin increases the activity and lysosomal trafficking of multiple mutant forms of acid alpha-glucosidase.
    Flanagan JJ; Rossi B; Tang K; Wu X; Mascioli K; Donaudy F; Tuzzi MR; Fontana F; Cubellis MV; Porto C; Benjamin E; Lockhart DJ; Valenzano KJ; Andria G; Parenti G; Do HV
    Hum Mutat; 2009 Dec; 30(12):1683-92. PubMed ID: 19862843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing Enzyme Mannose-6-Phosphate Levels but Not Miglustat Coadministration Enhances the Efficacy of Enzyme Replacement Therapy in Pompe Mice.
    Anding A; Kinton S; Baranowski K; Brezzani A; De Busser H; Dufault MR; Finn P; Keefe K; Tetrault T; Li Y; Qiu W; Raes K; Vitse O; Zhang M; Ziegler R; Sardi SP; Hunter B; George K
    J Pharmacol Exp Ther; 2023 Nov; 387(2):188-203. PubMed ID: 37679046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-Butyl-l-deoxynojirimycin (l-NBDNJ): Synthesis of an Allosteric Enhancer of α-Glucosidase Activity for the Treatment of Pompe Disease.
    D'Alonzo D; De Fenza M; Porto C; Iacono R; Huebecker M; Cobucci-Ponzano B; Priestman DA; Platt F; Parenti G; Moracci M; Palumbo G; Guaragna A
    J Med Chem; 2017 Dec; 60(23):9462-9469. PubMed ID: 29112434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pharmacological chaperone 1-deoxygalactonojirimycin increases alpha-galactosidase A levels in Fabry patient cell lines.
    Benjamin ER; Flanagan JJ; Schilling A; Chang HH; Agarwal L; Katz E; Wu X; Pine C; Wustman B; Desnick RJ; Lockhart DJ; Valenzano KJ
    J Inherit Metab Dis; 2009 Jun; 32(3):424-40. PubMed ID: 19387866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pharmacological chaperone N-n-butyl-deoxygalactonojirimycin enhances β-galactosidase processing and activity in fibroblasts of a patient with infantile GM1-gangliosidosis.
    Mohamed FE; Al Sorkhy M; Ghattas MA; Al-Gazali L; Al-Dirbashi O; Al-Jasmi F; Ali BR
    Hum Genet; 2020 May; 139(5):657-673. PubMed ID: 32219518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical chaperones improve transport and enhance stability of mutant alpha-glucosidases in glycogen storage disease type II.
    Okumiya T; Kroos MA; Vliet LV; Takeuchi H; Van der Ploeg AT; Reuser AJ
    Mol Genet Metab; 2007 Jan; 90(1):49-57. PubMed ID: 17095274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. α-Galactosidase aggregation is a determinant of pharmacological chaperone efficacy on Fabry disease mutants.
    Siekierska A; De Baets G; Reumers J; Gallardo R; Rudyak S; Broersen K; Couceiro J; Van Durme J; Schymkowitz J; Rousseau F
    J Biol Chem; 2012 Aug; 287(34):28386-97. PubMed ID: 22773828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological enhancement of α-glucosidase by the allosteric chaperone N-acetylcysteine.
    Porto C; Ferrara MC; Meli M; Acampora E; Avolio V; Rosa M; Cobucci-Ponzano B; Colombo G; Moracci M; Andria G; Parenti G
    Mol Ther; 2012 Dec; 20(12):2201-11. PubMed ID: 22990675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pharmacological chaperone AT2220 increases recombinant human acid α-glucosidase uptake and glycogen reduction in a mouse model of Pompe disease.
    Khanna R; Flanagan JJ; Feng J; Soska R; Frascella M; Pellegrino LJ; Lun Y; Guillen D; Lockhart DJ; Valenzano KJ
    PLoS One; 2012; 7(7):e40776. PubMed ID: 22815812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pharmacological chaperone AT2220 increases the specific activity and lysosomal delivery of mutant acid alpha-glucosidase, and promotes glycogen reduction in a transgenic mouse model of Pompe disease.
    Khanna R; Powe AC; Lun Y; Soska R; Feng J; Dhulipala R; Frascella M; Garcia A; Pellegrino LJ; Xu S; Brignol N; Toth MJ; Do HV; Lockhart DJ; Wustman BA; Valenzano KJ
    PLoS One; 2014; 9(7):e102092. PubMed ID: 25036864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endoplasmic reticulum stress induces autophagy through activation of p38 MAPK in fibroblasts from Pompe disease patients carrying c.546G>T mutation.
    Shimada Y; Kobayashi H; Kawagoe S; Aoki K; Kaneshiro E; Shimizu H; Eto Y; Ida H; Ohashi T
    Mol Genet Metab; 2011 Dec; 104(4):566-73. PubMed ID: 21982629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk.
    Van den Hout JM; Kamphoven JH; Winkel LP; Arts WF; De Klerk JB; Loonen MC; Vulto AG; Cromme-Dijkhuis A; Weisglas-Kuperus N; Hop W; Van Hirtum H; Van Diggelen OP; Boer M; Kroos MA; Van Doorn PA; Van der Voort E; Sibbles B; Van Corven EJ; Brakenhoff JP; Van Hove J; Smeitink JA; de Jong G; Reuser AJ; Van der Ploeg AT
    Pediatrics; 2004 May; 113(5):e448-57. PubMed ID: 15121988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Looking for protein stabilizing drugs with thermal shift assay.
    Andreotti G; Monticelli M; Cubellis MV
    Drug Test Anal; 2015 Sep; 7(9):831-4. PubMed ID: 25845367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A synthetic chaperone corrects the trafficking defect and disease phenotype in a protein misfolding disorder.
    Yam GH; Zuber C; Roth J
    FASEB J; 2005 Jan; 19(1):12-8. PubMed ID: 15629890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.