These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 1929384)

  • 1. COS degradation by selected CO-utilizing bacteria. Scientific note.
    Smith KD; Klasson KT; Ackerson MD; Clausen EC; Gaddy JL
    Appl Biochem Biotechnol; 1991; 28-29():787-96. PubMed ID: 1929384
    [No Abstract]   [Full Text] [Related]  

  • 2. Biotransformations of aromatic aldehydes by acetogenic bacteria.
    Lux MF; Keith E; Hsu TD; Drake HL
    FEMS Microbiol Lett; 1990 Jan; 55(1-2):73-7. PubMed ID: 2328911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity of carbon monoxide dehydrogenase from Rhodospirillum rubrum with carbon dioxide, carbonyl sulfide, and carbon disulfide.
    Ensign SA
    Biochemistry; 1995 Apr; 34(16):5372-8. PubMed ID: 7727395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth of Rhodospirillum rubrum on synthesis gas: conversion of CO to H2 and poly-beta-hydroxyalkanoate.
    Do YS; Smeenk J; Broer KM; Kisting CJ; Brown R; Heindel TJ; Bobik TA; DiSpirito AA
    Biotechnol Bioeng; 2007 Jun; 97(2):279-86. PubMed ID: 17054121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon monoxide-dependent growth of Rhodospirillum rubrum.
    Kerby RL; Ludden PW; Roberts GP
    J Bacteriol; 1995 Apr; 177(8):2241-4. PubMed ID: 7721719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial conversion of secoisolariciresinol and anhydrosecoisolariciresinol.
    Struijs K; Vincken JP; Gruppen H
    J Appl Microbiol; 2009 Jul; 107(1):308-17. PubMed ID: 19302311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Syngas obtained by microwave pyrolysis of household wastes as feedstock for polyhydroxyalkanoate production in Rhodospirillum rubrum.
    Revelles O; Beneroso D; Menéndez JA; Arenillas A; García JL; Prieto MA
    Microb Biotechnol; 2017 Nov; 10(6):1412-1417. PubMed ID: 27677746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustaining N2-dependent growth in the presence of CO.
    Kerby RL; Roberts GP
    J Bacteriol; 2011 Feb; 193(3):774-7. PubMed ID: 21115659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of trickle-bed bioreactors for converting synthesis gas to methane.
    Kimmel DE; Klasson KT; Clausen EC; Gaddy JL
    Appl Biochem Biotechnol; 1991; 28-29():457-69. PubMed ID: 1929378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adhesion of 1-carbon utilizing bacteria to polymeric surfaces.
    Donlon B; O'Gara P; Colleran E
    Biochem Soc Trans; 1991 Feb; 19(1):69S. PubMed ID: 2037198
    [No Abstract]   [Full Text] [Related]  

  • 11. A sodium ion gradient as energy source for Peptostreptococcus asaccharolyticus.
    Wohlfarth G; Buckel W
    Arch Microbiol; 1985 Jul; 142(2):128-35. PubMed ID: 4037980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel heme protein that acts as a carbon monoxide-dependent transcriptional activator in Rhodospirillum rubrum.
    Aono S; Nakajima H; Saito K; Okada M
    Biochem Biophys Res Commun; 1996 Nov; 228(3):752-6. PubMed ID: 8941349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailor-made PAT platform for safe syngas fermentations in batch, fed-batch and chemostat mode with Rhodospirillum rubrum.
    Karmann S; Follonier S; Egger D; Hebel D; Panke S; Zinn M
    Microb Biotechnol; 2017 Nov; 10(6):1365-1375. PubMed ID: 28585362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbonyl sulfide inhibition of CO dehydrogenase from Rhodospirillum rubrum.
    Hyman MR; Ensign SA; Arp DJ; Ludden PW
    Biochemistry; 1989 Aug; 28(17):6821-6. PubMed ID: 2510818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioreactor design studies for a hydrogen-producing bacterium.
    Wolfrum EJ; Watt AS
    Appl Biochem Biotechnol; 2002; 98-100():611-25. PubMed ID: 12018287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stoichiometry of glucose and starch splitting by strains of amylolytic bacteria from the rumen and anaerobic digester.
    Marounek M; Bartos S
    J Appl Bacteriol; 1986 Jul; 61(1):81-6. PubMed ID: 3759723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of one-carbon compounds by chemotrophic anaerobes.
    Zeikus JG
    Adv Microb Physiol; 1983; 24():215-99. PubMed ID: 6364727
    [No Abstract]   [Full Text] [Related]  

  • 18. Total synthesis of acetate from CO 2 . V. Determination by mass analysis of the different types of acetate formed from 13 CO 2 by heterotrophic bacteria.
    Schulman M; Parker D; Ljungdahl LG; Wood HG
    J Bacteriol; 1972 Feb; 109(2):633-44. PubMed ID: 5058447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptostreptococcus productus strain that grows rapidly with CO as the energy source.
    Lorowitz WH; Bryant MP
    Appl Environ Microbiol; 1984 May; 47(5):961-4. PubMed ID: 6430231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The isolation and properties of the predominant anaerobic bacteria in the caeca of chickens and turkeys.
    Barnes EM; Impey CS
    Br Poult Sci; 1970 Oct; 11(4):467-81. PubMed ID: 4920052
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.