These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 1929387)
21. Biosensor analyzer for BOD index express control on the basis of the yeast microorganisms Candida maltosa, Candida blankii, and Debaryomyces hansenii. Arlyapov V; Kamanin S; Ponamoreva O; Reshetilov A Enzyme Microb Technol; 2012 Apr; 50(4-5):215-20. PubMed ID: 22418260 [TBL] [Abstract][Full Text] [Related]
22. Use of synchronous fluorescence spectra to estimate biochemical oxygen demand (BOD) of urban rivers affected by treated sewage. Hur J; Kong DS Environ Technol; 2008 Apr; 29(4):435-44. PubMed ID: 18619148 [TBL] [Abstract][Full Text] [Related]
23. BOD biosensors for pulp and paper industry wastewater analysis. Raud M; Tutt M; Jõgi E; Kikas T Environ Sci Pollut Res Int; 2011 Aug; 19(7):3039-45. PubMed ID: 22374188 [TBL] [Abstract][Full Text] [Related]
24. Estimation of biological oxygen demand and chemical oxygen demand for combined sewer systems using synchronous fluorescence spectra. Hur J; Lee BM; Lee TH; Park DH Sensors (Basel); 2010; 10(4):2460-71. PubMed ID: 22319257 [TBL] [Abstract][Full Text] [Related]
25. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Chang IS; Jang JK; Gil GC; Kim M; Kim HJ; Cho BW; Kim BH Biosens Bioelectron; 2004 Jan; 19(6):607-13. PubMed ID: 14683644 [TBL] [Abstract][Full Text] [Related]
26. [Development of a low-cost single chamber microbial fuel cell type BOD sensor]. Wu F; Liu Z; Zhou SG; Wang YQ; Huang SH Huan Jing Ke Xue; 2009 Oct; 30(10):3099-103. PubMed ID: 19968138 [TBL] [Abstract][Full Text] [Related]
27. High-throughput determination of biochemical oxygen demand (BOD) by a microplate-based biosensor. Pang HL; Kwok NY; Chan PH; Yeung CH; Lo W; Wong KY Environ Sci Technol; 2007 Jun; 41(11):4038-44. PubMed ID: 17612187 [TBL] [Abstract][Full Text] [Related]
28. The use of co-immobilization of Trichosporon cutaneum and Bacillus licheniformis for a BOD sensor. Suriyawattanakul L; Surareungchai W; Sritongkam P; Tanticharoen M; Kirtikara K Appl Microbiol Biotechnol; 2002 Jun; 59(1):40-4. PubMed ID: 12073129 [TBL] [Abstract][Full Text] [Related]
29. Preparation of biofilm electrode with Xanthomonas sp. and carbon nanotubes and the application to rapid biochemical oxygen demand analysis in high-salt condition. Chen J; Yu Z; Sun J; Jia J; Li G Water Environ Res; 2008 Aug; 80(8):699-702. PubMed ID: 18751533 [TBL] [Abstract][Full Text] [Related]
30. Non-steady response of BOD biosensor for the determination of biochemical oxygen demand in wastewater. Velling S; Mashirin A; Hellat K; Tenno T J Environ Monit; 2011 Jan; 13(1):95-100. PubMed ID: 21042614 [TBL] [Abstract][Full Text] [Related]
31. Microbial corrosion monitoring by an amperometric microbial biosensor developed using whole cell of Pseudomonas sp. Dubey RS; Upadhyay SN Biosens Bioelectron; 2001 Dec; 16(9-12):995-1000. PubMed ID: 11679280 [TBL] [Abstract][Full Text] [Related]
32. Practical field application of a novel BOD monitoring system. Kim M; Youn SM; Shin SH; Jang JG; Han SH; Hyun MS; Gadd GM; Kim HJ J Environ Monit; 2003 Aug; 5(4):640-3. PubMed ID: 12948241 [TBL] [Abstract][Full Text] [Related]
33. A yeast co-culture-based biosensor for determination of waste water contamination levels. Yudina NY; Arlyapov VA; Chepurnova MA; Alferov SV; Reshetilov AN Enzyme Microb Technol; 2015 Oct; 78():46-53. PubMed ID: 26215344 [TBL] [Abstract][Full Text] [Related]
34. A novel bioelectrochemical BOD sensor operating with voltage input. Modin O; Wilén BM Water Res; 2012 Nov; 46(18):6113-20. PubMed ID: 23021520 [TBL] [Abstract][Full Text] [Related]
35. Development of photocatalytic biosensor for the evaluation of biochemical oxygen demand. Chee GJ; Nomura Y; Ikebukuro K; Karube I Biosens Bioelectron; 2005 Jul; 21(1):67-73. PubMed ID: 15967352 [TBL] [Abstract][Full Text] [Related]
36. Improvement of a mediator-type biochemical oxygen demand sensor for on-site measurement. Yoshida N; Hoashi J; Morita T; McNiven SJ; Nakamura H; Karube I J Biotechnol; 2001 Jul; 88(3):269-75. PubMed ID: 11434972 [TBL] [Abstract][Full Text] [Related]
37. A BOD biosensor based on a microorganism immobilized on an Al2O3 sol-gel matrix. Chen D; Cao Y; Liu B; Kong J Anal Bioanal Chem; 2002 Mar; 372(5-6):737-9. PubMed ID: 11941447 [TBL] [Abstract][Full Text] [Related]
38. Stopped-flow system with ozonizer for the estimation of low biochemical oxygen demand in environmental samples. Chee GJ; Nomura Y; Ikebukuro K; Karube I Biosens Bioelectron; 2007 Jun; 22(12):3092-8. PubMed ID: 17320372 [TBL] [Abstract][Full Text] [Related]
39. A single-chamber microbial fuel cell as a biosensor for wastewaters. Di Lorenzo M; Curtis TP; Head IM; Scott K Water Res; 2009 Jul; 43(13):3145-54. PubMed ID: 19482326 [TBL] [Abstract][Full Text] [Related]
40. Microbial BOD sensors based on Zr (IV)-loaded collagen fiber. Zhao L; He L; Chen S; Zou L; Zhou K; Ao X; Liu S; Hu X; Han G Enzyme Microb Technol; 2017 Mar; 98():52-57. PubMed ID: 28110664 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]