These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 1929390)
1. Methanol suppression of trichloroethylene degradation by Methylosinus trichosporium (OB3b) and methane-oxidizing mixed cultures. Eng W; Palumbo AV; Sriharan S; Strandberg GW Appl Biochem Biotechnol; 1991; 28-29():887-99. PubMed ID: 1929390 [TBL] [Abstract][Full Text] [Related]
2. Effect of nitrogen source on growth and trichloroethylene degradation by methane-oxidizing bacteria. Chu KH; Alvarez-Cohen L Appl Environ Microbiol; 1998 Sep; 64(9):3451-7. PubMed ID: 9726896 [TBL] [Abstract][Full Text] [Related]
3. Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Tsien HC; Brusseau GA; Hanson RS; Waclett LP Appl Environ Microbiol; 1989 Dec; 55(12):3155-61. PubMed ID: 2515801 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene. Oldenhuis R; Oedzes JY; van der Waarde JJ; Janssen DB Appl Environ Microbiol; 1991 Jan; 57(1):7-14. PubMed ID: 2036023 [TBL] [Abstract][Full Text] [Related]
5. Degradation of Trichloroethylene by Methanol-Grown Cultures of Methylosinus trichosporium OB3b PP358. Fitch MW; Speitel GE; Georgiou G Appl Environ Microbiol; 1996 Mar; 62(3):1124-8. PubMed ID: 16535263 [TBL] [Abstract][Full Text] [Related]
6. Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and their application to bioremediation. Sullivan JP; Dickinson D; Chase HA Crit Rev Microbiol; 1998; 24(4):335-73. PubMed ID: 9887367 [TBL] [Abstract][Full Text] [Related]
7. Trichloroethylene and chloroform degradation by a recombinant pseudomonad expressing soluble methane monooxygenase from Methylosinus trichosporium OB3b. Jahng D; Wood TK Appl Environ Microbiol; 1994 Jul; 60(7):2473-82. PubMed ID: 8074526 [TBL] [Abstract][Full Text] [Related]
8. Trichloroethene degradation in a two-step system by methylosinus trichosporium OB3b. Optimization of system performance: use of formate and methane. Sipkema EM; de Koning W; Van Hylckama Vlieg JE; Ganzeveld KJ; Janssen DB; Beenackers AA Biotechnol Bioeng; 1999 Apr; 63(1):56-68. PubMed ID: 10099581 [TBL] [Abstract][Full Text] [Related]
9. Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Brusseau GA; Tsien HC; Hanson RS; Wackett LP Biodegradation; 1990; 1(1):19-29. PubMed ID: 1368139 [TBL] [Abstract][Full Text] [Related]
10. Characterization of a methane-utilizing bacterium from a bacterial consortium that rapidly degrades trichloroethylene and chloroform. Alvarez-Cohen L; McCarty PL; Boulygina E; Hanson RS; Brusseau GA; Tsien HC Appl Environ Microbiol; 1992 Jun; 58(6):1886-93. PubMed ID: 1377902 [TBL] [Abstract][Full Text] [Related]
11. Methane and Trichloroethylene Degradation by Methylosinus trichosporium OB3b Expressing Particulate Methane Monooxygenase. Lontoh S; Semrau JD Appl Environ Microbiol; 1998 Mar; 64(3):1106-14. PubMed ID: 16349516 [TBL] [Abstract][Full Text] [Related]
12. Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Oldenhuis R; Vink RL; Janssen DB; Witholt B Appl Environ Microbiol; 1989 Nov; 55(11):2819-26. PubMed ID: 2624462 [TBL] [Abstract][Full Text] [Related]
13. NADH-Regulated metabolic model for growth of Methylosinus trichosporiumOB3b. Cometabolic degradation of trichloroethene and optimization of bioreactor system performance. Sipkema EM; de Koning W; Ganzeveld KJ; Janssen DB; Beenackers AA Biotechnol Prog; 2000; 16(2):189-98. PubMed ID: 10753443 [TBL] [Abstract][Full Text] [Related]
14. Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: can the tortoise beat the hare? Lee SW; Keeney DR; Lim DH; Dispirito AA; Semrau JD Appl Environ Microbiol; 2006 Dec; 72(12):7503-9. PubMed ID: 17012599 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of toxic effects of aeration and trichloroethylene oxidation on methanotrophic bacteria grown with different nitrogen sources. Chu KH; Alvarez-Cohen L Appl Environ Microbiol; 1999 Feb; 65(2):766-72. PubMed ID: 9925614 [TBL] [Abstract][Full Text] [Related]
16. Phenotypic characterization of copper-resistant mutants of Methylosinus trichosporium OB3b. Fitch MW; Graham DW; Arnold RG; Agarwal SK; Phelps P; Speitel GE; Georgiou G Appl Environ Microbiol; 1993 Sep; 59(9):2771-6. PubMed ID: 8215352 [TBL] [Abstract][Full Text] [Related]
17. Demonstration of efficient trichloroethylene biodegradation in a hollow-fiber membrane bioreactor. Pressman JG; Georgiou G; Speitel GE Biotechnol Bioeng; 1999 Mar; 62(6):681-92. PubMed ID: 9951524 [TBL] [Abstract][Full Text] [Related]
18. Development and mathematical modeling of a two-stage reactor system for trichloroethylene degradation using Methylosinus trichosporium OB3b. Hwang JW; Choi YB; Park S; Choi CY; Lee EY Biodegradation; 2007 Feb; 18(1):91-101. PubMed ID: 16467965 [TBL] [Abstract][Full Text] [Related]
19. Trichloroethylene degradation and mineralization by pseudomonads and Methylosinus trichosporium OB3b. Sun AK; Wood TK Appl Microbiol Biotechnol; 1996 Mar; 45(1-2):248-56. PubMed ID: 8920197 [TBL] [Abstract][Full Text] [Related]
20. Soluble methane monooxygenase component B gene probe for identification of methanotrophs that rapidly degrade trichloroethylene. Tsien HC; Hanson RS Appl Environ Microbiol; 1992 Mar; 58(3):953-60. PubMed ID: 1349468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]