These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19293922)

  • 1. Polarization-independent self-collimation based on pill-void photonic crystals with square symmetry.
    Xu Y; Chen XJ; Lan S; Dai QF; Guo Q; Wu LJ
    Opt Express; 2009 Mar; 17(6):4903-12. PubMed ID: 19293922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-collimating photonic crystal antireflection structure for both TE and TM polarizations.
    Park JM; Lee SG; Park HR; Lee MH
    Opt Express; 2010 Jun; 18(12):13083-93. PubMed ID: 20588438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization-insensitive and broad-angle self-collimation in a two-dimensional photonic crystal with rectangular air holes.
    Jiang L; Wu H; Li X
    Appl Opt; 2013 Sep; 52(27):6676-84. PubMed ID: 24085166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transverse magnetic defect modes in two-dimensional triangular-lattice photonic crystals.
    Stojić N; Glimm J; Deng Y; Haus JW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056614. PubMed ID: 11736123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations.
    Wen F; David S; Checoury X; El Kurdi M; Boucaud P
    Opt Express; 2008 Aug; 16(16):12278-89. PubMed ID: 18679505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies.
    Degirmenci E; Landais P
    Appl Opt; 2013 Oct; 52(30):7367-75. PubMed ID: 24216592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transverse-electric and transverse-magnetic mode slow light propagation in a two-dimensional photonic crystal waveguide.
    Wang D; Yu Z; Liu Y; Guo X; Shu C; Zhou S
    Appl Opt; 2013 Sep; 52(26):6523-8. PubMed ID: 24085128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultracompact transverse magnetic mode-pass filter based on one-dimensional photonic crystals with subwavelength structures.
    Kim DW; Lee MH; Kim Y; Kim KH
    Opt Express; 2016 Sep; 24(19):21560-5. PubMed ID: 27661894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element analysis of photon density of states for two-dimensional photonic crystals with in-plane light propagation.
    Lin MC; Jao RF
    Opt Express; 2007 Jan; 15(1):207-18. PubMed ID: 19532236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of the frequency-sensitive super-collimation phenomenon from the geometry of band dispersion surface for two-dimensional photonic crystals.
    Zhang M; Huang J; Jiang X
    Opt Express; 2022 Mar; 30(7):11726-11739. PubMed ID: 35473110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyper collimation ability of two-dimensional photonic crystals.
    Ru G; Zheng Y; Liu J; Jiang X
    Opt Express; 2019 Apr; 27(9):11968-11978. PubMed ID: 31052743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TM and TE propagating modes of photonic crystal waveguide based on honeycomb lattices.
    Mao H; Wang J; Yu K; Zhu Z
    Appl Opt; 2010 Dec; 49(34):6597-601. PubMed ID: 21124536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximizing band gaps in two-dimensional photonic crystals in square lattices.
    Cheng XL; Yang J
    J Opt Soc Am A Opt Image Sci Vis; 2013 Nov; 30(11):2314-9. PubMed ID: 24322930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-polarization Dirac cones in a simple 2D square lattice photonic crystal.
    Rodríguez JA; Wang B; Cappelli MA
    Opt Lett; 2020 May; 45(9):2486-2489. PubMed ID: 32356797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full-vectorial finite element method based eigenvalue algorithm for the analysis of 2D photonic crystals with arbitrary 3D anisotropy.
    Hsu SM; Chang HC
    Opt Express; 2007 Nov; 15(24):15797-811. PubMed ID: 19550864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of photonic bandgaps in polarization-independent grating waveguide structures.
    Grinvald E; Katchalski T; Soria S; Levit S; Friesem AA
    J Opt Soc Am A Opt Image Sci Vis; 2008 Jun; 25(6):1435-43. PubMed ID: 18516155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials.
    Bria D; Djafari-Rouhani B; Akjouj A; Dobrzynski L; Vigneron JP; El-Boudouti EH; Nougaoui A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066613. PubMed ID: 15244770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three-noncoplanar beams.
    Yang XL; Cai L; Liu Q
    Opt Express; 2003 May; 11(9):1050-5. PubMed ID: 19465969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate determination of band structures of two-dimensional dispersive anisotropic photonic crystals by the spectral element method.
    Luo M; Liu QH
    J Opt Soc Am A Opt Image Sci Vis; 2009 Jul; 26(7):1598-605. PubMed ID: 19568295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic crystal topological design for polarized and polarization-independent band gaps by gradient-free topology optimization.
    Yan Y; Liu P; Zhang X; Luo Y
    Opt Express; 2021 Aug; 29(16):24861-24883. PubMed ID: 34614832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.