These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 1929415)

  • 1. Ammonium ingestion prevents depletion of hepatic energy metabolites induced by acute ammonium intoxication.
    Kosenko E; Felipo V; Miñana MD; Grau E; Grisolía S
    Arch Biochem Biophys; 1991 Nov; 290(2):484-8. PubMed ID: 1929415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic hyperammonemia prevents changes in brain energy and ammonia metabolites induced by acute ammonium intoxication.
    Kosenko E; Kaminsky YG; Felipo V; Miñana MD; Grisolía S
    Biochim Biophys Acta; 1993 Jan; 1180(3):321-6. PubMed ID: 8422438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation of alanine metabolism by ammonia in the perfused rat liver. Quantitative analysis by means of a mathematical model.
    Bohnensack R; Fritz S
    Biochim Biophys Acta; 1991 Mar; 1073(2):347-56. PubMed ID: 2009283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats. Implications for the hormonal control of gluconeogenesis and action of hypoglycaemic agents.
    Pryor HJ; Smyth JE; Quinlan PT; Halestrap AP
    Biochem J; 1987 Oct; 247(2):449-57. PubMed ID: 3426547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the concentrations of hepatic metabolites on administration of dihydroxyacetone or glycerol to starved rats and their relationship to the control of ketogenesis.
    Williamson DH; Veloso D; Ellington EV; Krebs HA
    Biochem J; 1969 Sep; 114(3):575-84. PubMed ID: 4309529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of energy charge and redox state for hepatocyte gluconeogenesis of acutely uremic rats.
    Riegel W; Hörl WH
    Nephron; 1985; 40(2):206-12. PubMed ID: 4000349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ischaemia on metabolite concentrations in rat liver.
    Brosnan JT; Krebs HA; Williamson DH
    Biochem J; 1970 Mar; 117(1):91-6. PubMed ID: 4316090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ketone body, glucose, lactic acid, and amino acid utilization by tumors in vivo in fasted rats.
    Sauer LA; Dauchy RT
    Cancer Res; 1983 Aug; 43(8):3497-503. PubMed ID: 6861121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protective effect of long term ammonium ingestion against acute ammonium intoxication.
    Miñana MD; Felipo V; Grisolía S
    Biochem Biophys Res Commun; 1988 Jun; 153(3):979-83. PubMed ID: 3390190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of lactate removal by ketone bodies in rat liver. Evidence for a quantitatively important role of the plasma membrane lactate transporter in lactate metabolism.
    Metcalfe HK; Monson JP; Welch SG; Cohen RD
    J Clin Invest; 1986 Sep; 78(3):743-7. PubMed ID: 3745435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significance of blood ketone body ratio as an indicator of hepatic cellular energy status in jaundiced rabbits.
    Tanaka J; Ozawa K; Tobe T
    Gastroenterology; 1979 Apr; 76(4):691-6. PubMed ID: 421996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperammonemia decreases body fat content in rat.
    Miñana MD; Felipo V; Wallace R; Grisolía S
    FEBS Lett; 1989 Jun; 249(2):261-3. PubMed ID: 2737286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The redox state of the nicotinamide-adenine dinucleotides in rat liver homogenates.
    Krebs HA; Gascoyne T
    Biochem J; 1968 Jul; 108(4):513-20. PubMed ID: 4299127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased ketogenesis in hyperthyroid rats metabolizing ethanol.
    Dawson AG; Smith MM
    Biochem Pharmacol; 1986 Feb; 35(4):569-74. PubMed ID: 2868728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of hepatic nitrogen metabolism and glutathione release by cell volume regulatory mechanisms.
    Hüssinger D; Lang F; Bauers K; Gerok W
    Eur J Biochem; 1990 Nov; 193(3):891-8. PubMed ID: 2249700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepatic redox state and gluconeogenesis from lactate in vivo in the rat.
    Hawkins RA; Houghton CR; Williamson DH
    Biochem J; 1973 Jan; 132(1):19-25. PubMed ID: 4353000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The redox state and the concentration of ketone bodies in tissues of rats fed carbohydrate free diets.
    Konijn AM; Carmel N; Kaufmann NA
    J Nutr; 1976 Oct; 106(10):1507-14. PubMed ID: 184261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic studies in experimental liver disease resulting from D(+)-galactosamine administration.
    Record CO; Alberti KG; Williamson DH
    Biochem J; 1972 Nov; 130(1):37-44. PubMed ID: 4655444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of congenital hyperammonemia on the cerebral and hepatic levels of the intermediates of energy metabolism in spf mice.
    Ratnakumari L; Qureshi IA; Butterworth RF
    Biochem Biophys Res Commun; 1992 Apr; 184(2):746-51. PubMed ID: 1575747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of chronic intake of ethanol on lactate/pyruvate and beta-hydroxybutyrate/acetoacetate ratios in rat liver.
    Khanna JM; Kalant H; Loth J
    Can J Physiol Pharmacol; 1975 Apr; 53(2):299-303. PubMed ID: 1137825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.