These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19294297)

  • 1. Use of photopatterned porous polymer monoliths as passive micromixers to enhance mixing efficiency for on-chip labeling reactions.
    Mair DA; Schwei TR; Dinio TS; Svec F; Fréchet JM
    Lab Chip; 2009 Apr; 9(7):877-83. PubMed ID: 19294297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of porous polymer monoliths in polymeric microfluidic chips as an electrospray emitter for direct coupling to mass spectrometry.
    Bedair MF; Oleschuk RD
    Anal Chem; 2006 Feb; 78(4):1130-8. PubMed ID: 16478104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A digital microfluidic method for in situ formation of porous polymer monoliths with application to solid-phase extraction.
    Yang H; Mudrik JM; Jebrail MJ; Wheeler AR
    Anal Chem; 2011 May; 83(10):3824-30. PubMed ID: 21524096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics.
    Bhattacharyya A; Klapperich CM
    Anal Chem; 2006 Feb; 78(3):788-92. PubMed ID: 16448052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of porous polymer monoliths covalently attached to the walls of channels in plastic microdevices.
    Stachowiak TB; Rohr T; Hilder EF; Peterson DS; Yi M; Svec F; Fréchet JM
    Electrophoresis; 2003 Nov; 24(21):3689-93. PubMed ID: 14613194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parameters governing reproducibility of flow properties of porous monoliths photopatterned within microfluidic channels.
    He M; Bao JB; Zeng Y; Harrison DJ
    Electrophoresis; 2010 Jul; 31(14):2422-8. PubMed ID: 20568261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical and experimental characterization of a novel modular passive micromixer.
    Pennella F; Rossi M; Ripandelli S; Rasponi M; Mastrangelo F; Deriu MA; Ridolfi L; Kähler CJ; Morbiducci U
    Biomed Microdevices; 2012 Oct; 14(5):849-62. PubMed ID: 22711456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous polymer monoliths: simple and efficient mixers prepared by direct polymerization in the channels of microfluidic chips.
    Rohr T; Yu C; Davey MH; Svec F; Fréchet JM
    Electrophoresis; 2001 Oct; 22(18):3959-67. PubMed ID: 11700726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamental Studies of Rapidly Fabricated On-Chip Passive Micromixer for Modular Microfluidics.
    Guo W; Tang L; Zhou B; Fung Y
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33557366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic purification and preconcentration of mRNA by flow-through polymeric monolith.
    Satterfield BC; Stern S; Caplan MR; Hukari KW; West JA
    Anal Chem; 2007 Aug; 79(16):6230-5. PubMed ID: 17625914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 3D porous polymer monolith-based platform integrated in poly(dimethylsiloxane) microchips for immunoassay.
    Kang QS; Shen XF; Hu NN; Hu MJ; Liao H; Wang HZ; He ZK; Huang WH
    Analyst; 2013 May; 138(9):2613-9. PubMed ID: 23478568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low cost and manufacturable complete microTAS for detecting bacteria.
    Sauer-Budge AF; Mirer P; Chatterjee A; Klapperich CM; Chargin D; Sharon A
    Lab Chip; 2009 Oct; 9(19):2803-10. PubMed ID: 19967117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and evaluation of a passive alcove-based microfluidic mixer.
    Egawa T; Durand JL; Hayden EY; Rousseau DL; Yeh SR
    Anal Chem; 2009 Feb; 81(4):1622-7. PubMed ID: 19140669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospray micromixer chip for on-line derivatization and kinetic studies.
    Abonnenc M; Dayon L; Perruche B; Lion N; Girault HH
    Anal Chem; 2008 May; 80(9):3372-8. PubMed ID: 18361520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Print-and-peel fabricated passive micromixers.
    Thomas MS; Clift JM; Millare B; Vullev VI
    Langmuir; 2010 Feb; 26(4):2951-7. PubMed ID: 20000554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel.
    Huang MZ; Yang RJ; Tai CH; Tsai CH; Fu LM
    Biomed Microdevices; 2006 Dec; 8(4):309-15. PubMed ID: 17003961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Throughput Fabrication of Nanocomplexes Using 3D-Printed Micromixers.
    Bohr A; Boetker J; Wang Y; Jensen H; Rantanen J; Beck-Broichsitter M
    J Pharm Sci; 2017 Mar; 106(3):835-842. PubMed ID: 27938892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thirty-minute total synthesis of microfluidic systems and functionalized porous elements via "living" radical photo-polymerization.
    Abhyankar VV; Hatch AV
    Adv Healthc Mater; 2012 Nov; 1(6):773-8. PubMed ID: 23184830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic Bioreactor with Fibrous Micromixers for In Vitro mRNA Transcription.
    Choi I; Ahn GY; Kim ES; Hwang SH; Park HJ; Yoon S; Lee J; Cho Y; Nam JH; Choi SW
    Nano Lett; 2023 Sep; 23(17):7897-7905. PubMed ID: 37435905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscope-assisted UV-initiated preparation of well-defined porous polymer monolithic plugs in glass microchips for peptide preconcentration.
    Dziomba S; Araya-Farias M; Taverna M; Guerrouache M; Carbonnier B; Tran NT
    Anal Bioanal Chem; 2017 Mar; 409(8):2155-2162. PubMed ID: 28028588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.