These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture. Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707 [TBL] [Abstract][Full Text] [Related]
4. A novel fabrication technique to minimize poly(dimethylsiloxane)-microchannels deformation under high-pressure operation. Madadi H; Mohammadi M; Casals-Terré J; López RC Electrophoresis; 2013 Dec; 34(22-23):3126-32. PubMed ID: 24114728 [TBL] [Abstract][Full Text] [Related]
5. Micro magnetic stir-bar mixer integrated with parylene microfluidic channels. Ryu KS; Shaikh K; Goluch E; Fan Z; Liu C Lab Chip; 2004 Dec; 4(6):608-13. PubMed ID: 15570373 [TBL] [Abstract][Full Text] [Related]
6. Tuneable hydrophoretic separation using elastic deformation of poly(dimethylsiloxane). Choi S; Park JK Lab Chip; 2009 Jul; 9(13):1962-5. PubMed ID: 19532973 [TBL] [Abstract][Full Text] [Related]
7. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805 [TBL] [Abstract][Full Text] [Related]
8. Pumping fluids in microfluidic systems using the elastic deformation of poly(dimethylsiloxane). Weibel DB; Siegel AC; Lee A; George AH; Whitesides GM Lab Chip; 2007 Dec; 7(12):1832-6. PubMed ID: 18030408 [TBL] [Abstract][Full Text] [Related]
9. Microfabrication of cylindrical microfluidic channel networks for microvascular research. Huang Z; Li X; Martins-Green M; Liu Y Biomed Microdevices; 2012 Oct; 14(5):873-83. PubMed ID: 22729782 [TBL] [Abstract][Full Text] [Related]
10. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices. Nock V; Blaikie RJ; David T Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous fabrication of PDMS through-holes for three-dimensional microfluidic applications. Mosadegh B; Agarwal M; Torisawa YS; Takayama S Lab Chip; 2010 Aug; 10(15):1983-6. PubMed ID: 20502832 [TBL] [Abstract][Full Text] [Related]
13. A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions. Fiddes LK; Raz N; Srigunapalan S; Tumarkan E; Simmons CA; Wheeler AR; Kumacheva E Biomaterials; 2010 May; 31(13):3459-64. PubMed ID: 20167361 [TBL] [Abstract][Full Text] [Related]
14. A microfluidic device for depositing and addressing two cell populations with intercellular population communication capability. Lovchik RD; Tonna N; Bianco F; Matteoli M; Delamarche E Biomed Microdevices; 2010 Apr; 12(2):275-82. PubMed ID: 20013313 [TBL] [Abstract][Full Text] [Related]
16. Analysis of passive mixing behavior in a poly(dimethylsiloxane) microfluidic channel using confocal fluorescence and Raman microscopy. Park T; Lee M; Choo J; Kim YS; Lee EK; Kim DJ; Lee SH Appl Spectrosc; 2004 Oct; 58(10):1172-9. PubMed ID: 15527517 [TBL] [Abstract][Full Text] [Related]
18. Multiplex pressure measurement in microsystems using volume displacement of particle suspensions. Chung K; Lee H; Lu H Lab Chip; 2009 Dec; 9(23):3345-53. PubMed ID: 19904399 [TBL] [Abstract][Full Text] [Related]
19. Microfluidics analysis of red blood cell membrane viscoelasticity. Tomaiuolo G; Barra M; Preziosi V; Cassinese A; Rotoli B; Guido S Lab Chip; 2011 Feb; 11(3):449-54. PubMed ID: 21076756 [TBL] [Abstract][Full Text] [Related]
20. A simple method to determine the surface charge in microfluidic channels. Mampallil D; van den Ende D; Mugele F Electrophoresis; 2010 Jan; 31(3):563-9. PubMed ID: 20119966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]