BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 19294311)

  • 1. Hydrodynamic resistance of single confined moving drops in rectangular microchannels.
    Vanapalli SA; Banpurkar AG; van den Ende D; Duits MH; Mugele F
    Lab Chip; 2009 Apr; 9(7):982-90. PubMed ID: 19294311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic forces acting on a microscopic emulsion drop growing at a capillary tip in relation to the process of membrane emulsification.
    Danov KD; Danova DK; Kralchevsky PA
    J Colloid Interface Sci; 2007 Dec; 316(2):844-57. PubMed ID: 17900600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emulsification in turbulent flow 1. Mean and maximum drop diameters in inertial and viscous regimes.
    Vankova N; Tcholakova S; Denkov ND; Ivanov IB; Vulchev VD; Danner T
    J Colloid Interface Sci; 2007 Aug; 312(2):363-80. PubMed ID: 17462665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The drop size in membrane emulsification determined from the balance of capillary and hydrodynamic forces.
    Christov NC; Danov KD; Danova DK; Kralchevsky PA
    Langmuir; 2008 Feb; 24(4):1397-410. PubMed ID: 17963414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Slight Deformation on Thermocapillary-Driven Droplet Coalescence and Growth.
    Rother MA; Davis RH
    J Colloid Interface Sci; 1999 Jun; 214(2):297-318. PubMed ID: 10339370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pressure drop along rectangular microchannels containing bubbles.
    Fuerstman MJ; Lai A; Thurlow ME; Shevkoplyas SS; Stone HA; Whitesides GM
    Lab Chip; 2007 Nov; 7(11):1479-89. PubMed ID: 17960275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion of deformable drops through granular media and other confined geometries.
    Davis RH; Zinchenko AZ
    J Colloid Interface Sci; 2009 Jun; 334(2):113-23. PubMed ID: 19406427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties.
    Xu JH; Luo GS; Li SW; Chen GG
    Lab Chip; 2006 Jan; 6(1):131-6. PubMed ID: 16372080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pillar-induced droplet merging in microfluidic circuits.
    Niu X; Gulati S; Edel JB; deMello AJ
    Lab Chip; 2008 Nov; 8(11):1837-41. PubMed ID: 18941682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numerical study on the coalescence of emulsion droplets in a constricted capillary tube.
    Yan L; Thompson KE; Valsaraj KT
    J Colloid Interface Sci; 2006 Jun; 298(2):832-44. PubMed ID: 16483593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio.
    Hattori K; Sugiura S; Kanamori T
    Lab Chip; 2009 Jun; 9(12):1763-72. PubMed ID: 19495461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic droplet-based liquid-liquid extraction.
    Mary P; Studer V; Tabeling P
    Anal Chem; 2008 Apr; 80(8):2680-7. PubMed ID: 18351786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emulsification in turbulent flow: 3. Daughter drop-size distribution.
    Tcholakova S; Vankova N; Denkov ND; Danner T
    J Colloid Interface Sci; 2007 Jun; 310(2):570-89. PubMed ID: 17376472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple, robust storage of drops and fluids in a microfluidic device.
    Boukellal H; Selimović S; Jia Y; Cristobal G; Fraden S
    Lab Chip; 2009 Jan; 9(2):331-8. PubMed ID: 19107293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Droplet motion in microfluidic networks: Hydrodynamic interactions and pressure-drop measurements.
    Sessoms DA; Belloul M; Engl W; Roche M; Courbin L; Panizza P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016317. PubMed ID: 19658816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emulsification in turbulent flow 2. Breakage rate constants.
    Vankova N; Tcholakova S; Denkov ND; Vulchev VD; Danner T
    J Colloid Interface Sci; 2007 Sep; 313(2):612-29. PubMed ID: 17553511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental contribution to the understanding of the dynamics of spreading of Newtonian fluids: effect of volume, viscosity and surfactant.
    Roques-Carmes T; Mathieu V; Gigante A
    J Colloid Interface Sci; 2010 Apr; 344(1):180-97. PubMed ID: 20089256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic control of the interface between two liquids flowing through a horizontal or vertical microchannel.
    Stiles PJ; Fletcher DF
    Lab Chip; 2004 Apr; 4(2):121-4. PubMed ID: 15052351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling.
    Glawdel T; Elbuken C; Ren CL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016323. PubMed ID: 22400673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.