BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 19294354)

  • 21. A non-synonymous SNP with the allele frequency correlated with the altitude may contribute to the hypoxia adaptation of Tibetan chicken.
    Li S; Li D; Zhao X; Wang Y; Yin H; Zhou L; Zhong C; Zhu Q
    PLoS One; 2017; 12(2):e0172211. PubMed ID: 28222154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression pattern of HIF1α mRNA in brain, heart and liver tissues of Tibet chicken embryos in hypoxia revealed with quantitative real-time PCR.
    Zhang LF; Lian LS; Zhao CJ; Li JY; Bao HG; Wu Ch
    Animal; 2007 Nov; 1(10):1467-71. PubMed ID: 22444919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Blood characteristics for high altitude adaptation in Tibetan chickens.
    Zhang H; Wu CX; Chamba Y; Ling Y
    Poult Sci; 2007 Jul; 86(7):1384-9. PubMed ID: 17575186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of chicken eNOS gene and differential expression in highland versus lowland chicken breeds.
    Peng JF; Ling Y; Gou WY; Zhang H; Wu CX
    Poult Sci; 2012 Sep; 91(9):2275-81. PubMed ID: 22912463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Genetic cloning and expression of hypoxia inducible factor 1 alpha in high altitude hypoxic adaptation species Tibetan antelope (Pantholops hodgsonii)].
    Liu F; Wuren T; Ma L; Yang YZ; Ge RL
    Sheng Li Xue Bao; 2011 Dec; 63(6):565-73. PubMed ID: 22193452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Association between MT-CO3 haplotypes and high-altitude adaptation in Tibetan chicken.
    Sun J; Zhong H; Chen SY; Yao YG; Liu YP
    Gene; 2013 Oct; 529(1):131-7. PubMed ID: 23850731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulatory effects of circular RNA on hypoxia adaptation in chicken embryos.
    Chen X; Zhang Y; Zhang W; Nie R; Bao H; Zhang B; Zhang H
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37788641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distinct expression patterns of genes associated with muscle growth and adipose deposition in tibetan pigs: a possible adaptive mechanism for high altitude conditions.
    Zhu L; Li M; Li X; Shuai S; Liu H; Wang J; Jiang A; Gu Y; Zhang K; Teng X; Jiang Z
    High Alt Med Biol; 2009; 10(1):45-55. PubMed ID: 19278352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Blood gas, hemoglobin, and growth of Tibetan chicken embryos incubated at high altitude.
    Wei ZH; Zhang H; Jia CL; Ling Y; Gou X; Deng XM; Wu CX
    Poult Sci; 2007 May; 86(5):904-8. PubMed ID: 17435024
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential gene expression of phosphoglyceric kinase (PGK) and hypoxic adaptation in chicken.
    Wang C; Yuan C; Zhang L; Wu C; Li N
    Sci China C Life Sci; 2007 Jun; 50(3):335-42. PubMed ID: 17609890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequencing and alignment of mitochondrial genomes of Tibetan chicken and two lowland chicken breeds.
    Bao H; Zhao C; Li J; Wu C
    Sci China C Life Sci; 2008 Jan; 51(1):47-51. PubMed ID: 18176790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identifying Candidate Genes for Hypoxia Adaptation of Tibet Chicken Embryos by Selection Signature Analyses and RNA Sequencing.
    Liu X; Wang X; Liu J; Wang X; Bao H
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32698384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential gene expression of aldolase C (ALDOC) and hypoxic adaptation in chickens.
    Wang CF; Yuan CZ; Wang SH; Zhang H; Hu XX; Zhang L; Wu C; Li N
    Anim Genet; 2007 Jun; 38(3):203-10. PubMed ID: 17539972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of chronic hypoxia on the gene expression profile in the embryonic heart in three Chinese indigenous chicken breeds (
    Li X; Abdel-Moneim AE; Hu Z; Mesalam NM; Yang B
    Front Vet Sci; 2022; 9():942159. PubMed ID: 35990266
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Population Genomics Analysis Revealed Origin and High-altitude Adaptation of Tibetan Pigs.
    Ma YF; Han XM; Huang CP; Zhong L; Adeola AC; Irwin DM; Xie HB; Zhang YP
    Sci Rep; 2019 Aug; 9(1):11463. PubMed ID: 31391504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression pattern of heme oxygenase 1 gene and hypoxic adaptation in chicken embryos.
    Gou W; Peng J; Wu Q; Zhang Q; Zhang H; Wu C
    Comp Biochem Physiol B Biochem Mol Biol; 2014 Aug; 174():23-8. PubMed ID: 24947210
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tibetan and Andean patterns of adaptation to high-altitude hypoxia.
    Beall CM
    Hum Biol; 2000 Feb; 72(1):201-28. PubMed ID: 10721618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genomic Analysis Reveals Hypoxia Adaptation in the Tibetan Mastiff by Introgression of the Gray Wolf from the Tibetan Plateau.
    Miao B; Wang Z; Li Y
    Mol Biol Evol; 2017 Mar; 34(3):734-743. PubMed ID: 27927792
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative analysis of long noncoding RNA and mRNA expression provides insights into adaptation to hypoxia in Tibetan sheep.
    Wang F; Liu J; Zeng Q; Zhuoga D
    Sci Rep; 2022 Apr; 12(1):6597. PubMed ID: 35449433
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whole genome bisulfite sequencing reveals unique adaptations to high-altitude environments in Tibetan chickens.
    Zhang Z; Du H; Bai L; Yang C; Li Q; Li X; Qiu M; Yu C; Jiang Z; Jiang X; Liu L; Hu C; Xia B; Xiong X; Song X; Jiang X
    PLoS One; 2018; 13(3):e0193597. PubMed ID: 29561872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.