BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 19294411)

  • 1. Time course of haemoglobin mass during 21 days live high:train low simulated altitude.
    Clark SA; Quod MJ; Clark MA; Martin DT; Saunders PU; Gore CJ
    Eur J Appl Physiol; 2009 Jun; 106(3):399-406. PubMed ID: 19294411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-term hematological effects upon completion of a four-week simulated altitude camp.
    Pottgiesser T; Garvican LA; Martin DT; Featonby JM; Gore CJ; Schumacher YO
    Int J Sports Physiol Perform; 2012 Mar; 7(1):79-83. PubMed ID: 21941010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contribution of haemoglobin mass to increases in cycling performance induced by simulated LHTL.
    Garvican LA; Pottgiesser T; Martin DT; Schumacher YO; Barras M; Gore CJ
    Eur J Appl Physiol; 2011 Jun; 111(6):1089-101. PubMed ID: 21113616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of haemoglobin mass on VO(2)max following normobaric 'live high-train low' in endurance-trained athletes.
    Robach P; Siebenmann C; Jacobs RA; Rasmussen P; Nordsborg N; Pesta D; Gnaiger E; Díaz V; Christ A; Fiedler J; Crivelli N; Secher NH; Pichon A; Maggiorini M; Lundby C
    Br J Sports Med; 2012 Sep; 46(11):822-7. PubMed ID: 22790809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in performance, maximal oxygen uptake and maximal accumulated oxygen deficit after 5, 10 and 15 days of live high:train low altitude exposure.
    Roberts AD; Clark SA; Townsend NE; Anderson ME; Gore CJ; Hahn AG
    Eur J Appl Physiol; 2003 Jan; 88(4-5):390-5. PubMed ID: 12527968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do male athletes with already high initial haemoglobin mass benefit from 'live high-train low' altitude training?
    Hauser A; Troesch S; Steiner T; Brocherie F; Girard O; Saugy JJ; Schmitt L; Millet GP; Wehrlin JP
    Exp Physiol; 2018 Jan; 103(1):68-76. PubMed ID: 29024137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Live high-train low" using normobaric hypoxia: a double-blinded, placebo-controlled study.
    Siebenmann C; Robach P; Jacobs RA; Rasmussen P; Nordsborg N; Diaz V; Christ A; Olsen NV; Maggiorini M; Lundby C
    J Appl Physiol (1985); 2012 Jan; 112(1):106-17. PubMed ID: 22033534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of "Live High-Train Low" in normobaric versus hypobaric hypoxia.
    Saugy JJ; Schmitt L; Cejuela R; Faiss R; Hauser A; Wehrlin JP; Rudaz B; Delessert A; Robinson N; Millet GP
    PLoS One; 2014; 9(12):e114418. PubMed ID: 25517507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Living high-training low: effect on erythropoiesis and aerobic performance in highly-trained swimmers.
    Robach P; Schmitt L; Brugniaux JV; Roels B; Millet G; Hellard P; Nicolet G; Duvallet A; Fouillot JP; Moutereau S; Lasne F; Pialoux V; Olsen NV; Richalet JP
    Eur J Appl Physiol; 2006 Mar; 96(4):423-33. PubMed ID: 16328191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Live high:train low increases muscle buffer capacity and submaximal cycling efficiency.
    Gore CJ; Hahn AG; Aughey RJ; Martin DT; Ashenden MJ; Clark SA; Garnham AP; Roberts AD; Slater GJ; McKenna MJ
    Acta Physiol Scand; 2001 Nov; 173(3):275-86. PubMed ID: 11736690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypobaric live high-train low does not improve aerobic performance more than live low-train low in cross-country skiers.
    Robach P; Hansen J; Pichon A; Meinild Lundby AK; Dandanell S; Slettaløkken Falch G; Hammarström D; Pesta DH; Siebenmann C; Keiser S; Kérivel P; Whist JE; Rønnestad BR; Lundby C
    Scand J Med Sci Sports; 2018 Jun; 28(6):1636-1652. PubMed ID: 29469995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproducibility of performance changes to simulated live high/train low altitude.
    Robertson EY; Saunders PU; Pyne DB; Aughey RJ; Anson JM; Gore CJ
    Med Sci Sports Exerc; 2010 Feb; 42(2):394-401. PubMed ID: 19927018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic intermittent hypoxia and incremental cycling exercise independently depress muscle in vitro maximal Na+-K+-ATPase activity in well-trained athletes.
    Aughey RJ; Gore CJ; Hahn AG; Garnham AP; Clark SA; Petersen AC; Roberts AD; McKenna MJ
    J Appl Physiol (1985); 2005 Jan; 98(1):186-92. PubMed ID: 15033968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time course of the hemoglobin mass response to natural altitude training in elite endurance cyclists.
    Garvican L; Martin D; Quod M; Stephens B; Sassi A; Gore C
    Scand J Med Sci Sports; 2012 Feb; 22(1):95-103. PubMed ID: 20561279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between changes in haemoglobin mass and maximal oxygen uptake after hypoxic exposure.
    Saunders PU; Garvican-Lewis LA; Schmidt WF; Gore CJ
    Br J Sports Med; 2013 Dec; 47 Suppl 1(Suppl 1):i26-30. PubMed ID: 24282203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eighteen days of "living high, training low" stimulate erythropoiesis and enhance aerobic performance in elite middle-distance runners.
    Brugniaux JV; Schmitt L; Robach P; Nicolet G; Fouillot JP; Moutereau S; Lasne F; Pialoux V; Saas P; Chorvot MC; Cornolo J; Olsen NV; Richalet JP
    J Appl Physiol (1985); 2006 Jan; 100(1):203-11. PubMed ID: 16179396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Erythropoiesis and performance after two weeks of living high and training low in well trained triathletes.
    Dehnert C; Hütler M; Liu Y; Menold E; Netzer C; Schick R; Kubanek B; Lehmann M; Böning D; Steinacker JM
    Int J Sports Med; 2002 Nov; 23(8):561-6. PubMed ID: 12439771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Similar Hemoglobin Mass Response in Hypobaric and Normobaric Hypoxia in Athletes.
    Hauser A; Schmitt L; Troesch S; Saugy JJ; Cejuela-Anta R; Faiss R; Robinson N; Wehrlin JP; Millet GP
    Med Sci Sports Exerc; 2016 Apr; 48(4):734-41. PubMed ID: 26540262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sea-level exercise performance following adaptation to hypoxia: a meta-analysis.
    Bonetti DL; Hopkins WG
    Sports Med; 2009; 39(2):107-27. PubMed ID: 19203133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemoglobin mass after 21 days of conventional altitude training at 1816 m.
    Pottgiesser T; Ahlgrim C; Ruthardt S; Dickhuth HH; Schumacher YO
    J Sci Med Sport; 2009 Nov; 12(6):673-5. PubMed ID: 18768367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.