These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19294542)

  • 61. A comprehensive fluid-structure interaction model of the left coronary artery.
    Meza D; Rubenstein DA; Yin W
    J Biomech Eng; 2018 Jul; ():. PubMed ID: 30029208
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Computational analysis of magnetic effects on pulsatile flow of couple stress fluid through a bifurcated artery.
    Srinivasacharya D; Rao GM
    Comput Methods Programs Biomed; 2016 Dec; 137():269-279. PubMed ID: 28110731
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mathematical inspection of heat transfer and unsteady viscous flow in a tunnel with trapezoidal shaped slender wall.
    Riaz Dar MN; Hussain A; Hussain F; Alrasheedi NH; Hajlaoui K; Ben Hamida MB
    Sci Rep; 2023 Jul; 13(1):10830. PubMed ID: 37402947
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Biorheological Model on Flow of Herschel-Bulkley Fluid through a Tapered Arterial Stenosis with Dilatation.
    Priyadharshini S; Ponalagusamy R
    Appl Bionics Biomech; 2015; 2015():406195. PubMed ID: 27041979
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A 2D FSI mathematical model of blood flow to analyze the hyper-viscous effects in atherosclerotic COVID patients.
    S SN; Saha S; Bhattacharjee A
    Results Eng; 2021 Dec; 12():100275. PubMed ID: 35317220
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A Computational Method for Analyzing the Biomechanics of Arterial Bruits.
    Zhu C; Seo JH; Bakhshaee H; Mittal R
    J Biomech Eng; 2017 May; 139(5):. PubMed ID: 28303271
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Computational Modeling of Carotid Bruits.
    Venugopal P; Malcevic I; Pastouchenko N; Seeley CE; Zhang X; DeMarco JK; Foo TK
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2658-2661. PubMed ID: 33018553
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Influence of the distensibility of large arteries on the longitudinal impedance: application for the development of non-invasive techniques to the diagnosis of arterial diseases.
    Sahtout W; Salah RB
    Nonlinear Biomed Phys; 2012 Apr; 6(1):2. PubMed ID: 22507310
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mechanics of non-Newtonian blood flow in an artery having multiple stenosis and electroosmotic effects.
    Akhtar S; McCash LB; Nadeem S; Saleem S; Issakhov A
    Sci Prog; 2021; 104(3):368504211031693. PubMed ID: 34296626
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Analysis of Flow Characteristics of the Blood Flowing through an Inclined Tapered Porous Artery with Mild Stenosis under the Influence of an Inclined Magnetic Field.
    Srivastava N
    J Biophys; 2014; 2014():797142. PubMed ID: 24719614
    [TBL] [Abstract][Full Text] [Related]  

  • 71. An evaluation of a micropolar model for blood flow through an idealized stenosis.
    Hogan HA; Henriksen M
    J Biomech; 1989; 22(3):211-8. PubMed ID: 2722892
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Weakly imposed boundary conditions for shear-rate dependent non-Newtonian fluids: application to cardiovascular flows.
    Kang S; Nashar S; Livingston ER; Masud A
    Math Biosci Eng; 2021 May; 18(4):3855-3886. PubMed ID: 34198415
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Imperatives of Mathematical Model of Arterial Blood Dynamics for Interpretation of Doppler Velocimetry: A Narrative Review.
    Abubakar U; Ugwu AC; Mbah GCE; Tivde T; Sidi M; Luntsi G; Ochie K; Ali AM; Mohammed A
    J Med Ultrasound; 2023; 31(3):188-194. PubMed ID: 38025000
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A Computational Model for Biomechanical Effects of Arterial Compliance Mismatch.
    He F; Hua L; Gao LJ
    Appl Bionics Biomech; 2015; 2015():213236. PubMed ID: 27019580
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Response theory for confined systems.
    Bernardi S; Brookes SJ; Searles DJ; Evans DJ
    J Chem Phys; 2012 Aug; 137(7):074114. PubMed ID: 22920110
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The Polar Fluid Model for Blood Flow through a Tapered Artery with Overlapping Stenosis: Effects of Catheter and Velocity Slip.
    Reddy JV; Srikanth D
    Appl Bionics Biomech; 2015; 2015():174387. PubMed ID: 27018180
    [TBL] [Abstract][Full Text] [Related]  

  • 77. First-order energy-integral model for thin Newtonian liquids falling along sinusoidal furrows.
    Sadiq IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036309. PubMed ID: 22587182
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Modulated complexed stenosed region consequences under the electroosmotic stimulation.
    Ijaz S; Shaheen S; Shahzadi I; Muhammad T
    Sci Rep; 2023 Oct; 13(1):17862. PubMed ID: 37857804
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Blood flow suspension in tapered stenosed arteries for Walter's B fluid model.
    Akbar NS
    Comput Methods Programs Biomed; 2016 Aug; 132():45-55. PubMed ID: 27282226
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mathematical modelling of the human cardiovascular system in the presence of stenosis.
    Sud VK; Srinivasan RS; Charles JB; Bungo MW
    Phys Med Biol; 1993 Mar; 38(3):369-78. PubMed ID: 8451280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.