These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19294542)

  • 81. Comment on "Radial and longitudinal motion of the arterial wall: Their relation to pulsatile pressure and flow in the artery".
    Lin Wang YY
    Phys Rev E; 2019 Jun; 99(6-2):066401. PubMed ID: 31330718
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Newtonian flow inside carbon nanotube with permeable boundary taking into account van der Waals forces.
    Chan Y; Lee SL; Chen W; Zheng L; Shi Y; Ren Y
    Sci Rep; 2019 Aug; 9(1):12121. PubMed ID: 31431670
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Blood flow through axially symmetric sections of compliant vessels: new effective closed models.
    Canić S; Tambaca J; Mikelić A; Hartley CJ; Mirković D; Chavez J; Rosenstrauch D
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():3696-9. PubMed ID: 17271096
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Shear response of a smectic film stabilized by an external field.
    Franosch T; Nelson DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 1):061706. PubMed ID: 11415122
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Theory of applying shear strains from boundary walls: Linear response in glasses.
    Onuki A; Kawasaki T
    J Chem Phys; 2019 Mar; 150(12):124504. PubMed ID: 30927885
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Axisymmetric bioconvection in a cylinder.
    Ghorai S; Hill NA
    J Theor Biol; 2002 Nov; 219(2):137-52. PubMed ID: 12413872
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A Navier-Stokes phase-field crystal model for colloidal suspensions.
    Praetorius S; Voigt A
    J Chem Phys; 2015 Apr; 142(15):154904. PubMed ID: 25903907
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Screening effects in flow through rough channels.
    Andrade JS; Araújo AD; Filoche M; Sapoval B
    Phys Rev Lett; 2007 May; 98(19):194101. PubMed ID: 17677621
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Theoretical Analysis of Metallic Nanoparticles on Blood Flow Through Tapered Elastic Artery With Overlapping Stenosis.
    Nadeem S; Ijaz S
    IEEE Trans Nanobioscience; 2015 Jun; 14(4):417-428. PubMed ID: 25594976
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Corrigendum: Comparison of Newtonian and Non-newtonian Fluid Models in Blood Flow Simulation in Patients With Intracranial Arterial Stenosis.
    Liu H; Lan L; Abrigo J; Ip HL; Soo Y; Zheng D; Wong KS; Wang D; Shi L; Leung TW; Leng X
    Front Physiol; 2021; 12():782647. PubMed ID: 34737713
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Fluid flow characteristics within an oscillating lower spherical surface and a stationary concentric upper surface for application to the artificial hip joint.
    Tso CP; Hor CH; Chen GM; Kok CK
    Heliyon; 2018 Dec; 4(12):e01085. PubMed ID: 30627676
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Statistical mechanics far from equilibrium: prediction and test for a sheared system.
    Evans RM; Simha RA; Baule A; Olmsted PD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051109. PubMed ID: 20866187
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Slip flow through a non-uniform channel under the influence of transverse magnetic field.
    Farooq J; Mushtaq M; Munir S; Ramzan M; Chung JD; Farooq U
    Sci Rep; 2018 Sep; 8(1):13137. PubMed ID: 30177724
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Scientific breakdown for physiological blood flow inside a tube with multi-thrombosis.
    Akhtar S; McCash LB; Nadeem S; Saleem A
    Sci Rep; 2021 Mar; 11(1):6718. PubMed ID: 33762650
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Stenosed segment descending colon associated with trauma.
    CORBETT R
    Proc R Soc Med; 1957 Apr; 50(4):271-2. PubMed ID: 13431883
    [No Abstract]   [Full Text] [Related]  

  • 96. Self-consistent derivation of subgrid stresses for large-scale fluid equations.
    Minotti FO
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):429-34. PubMed ID: 11046282
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Dynamic response of wall shear stress on the stenosed artery.
    Sen S; Chakravarty S
    Comput Methods Biomech Biomed Engin; 2009 Oct; 12(5):523-9. PubMed ID: 19294542
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Analysis of pulsatile blood flow in constricted bifurcated arteries with vorticity-stream function approach.
    Chakravarty S; Sen S
    J Med Eng Technol; 2008; 32(1):10-22. PubMed ID: 18183516
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Numerical simulation of unsteady generalized Newtonian blood flow through differently shaped distensible arterial stenoses.
    Sarifuddin ; Chakravarty S; Mandal PK; Layek GC
    J Med Eng Technol; 2008; 32(5):385-99. PubMed ID: 18821416
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Comparison of Newtonian and non-Newtonian flows in a two-dimensional carotid artery model using the lattice Boltzmann method.
    Boyd J; Buick JM
    Phys Med Biol; 2007 Oct; 52(20):6215-28. PubMed ID: 17921581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.