These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19294728)

  • 21. Single-crystalline vanadium dioxide nanowires with rectangular cross sections.
    Guiton BS; Gu Q; Prieto AL; Gudiksen MS; Park H
    J Am Chem Soc; 2005 Jan; 127(2):498-9. PubMed ID: 15643854
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coupled effects of size and uniaxial force on phase transitions in copper nanowires.
    Zhu J; Shi D; Zhao J; Wang B
    Nanotechnology; 2010 May; 21(18):185703. PubMed ID: 20378947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity.
    Xia BY; Wu HB; Yan Y; Lou XW; Wang X
    J Am Chem Soc; 2013 Jun; 135(25):9480-5. PubMed ID: 23742152
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water-dispersible ultrathin Au nanowires prepared using a lamellar template of a long-chain amidoamine derivative.
    Imura Y; Tanuma H; Sugimoto H; Ito R; Hojo S; Endo H; Morita C; Kawai T
    Chem Commun (Camb); 2011 Jun; 47(22):6380-2. PubMed ID: 21552625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-crystalline gold microplates: synthesis, characterization, and thermal stability.
    Kan C; Zhu X; Wang G
    J Phys Chem B; 2006 Mar; 110(10):4651-6. PubMed ID: 16526697
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An efficient templating approach for synthesis of highly uniform CdTe and PbTe nanowires.
    Liang HW; Liu S; Wu QS; Yu SH
    Inorg Chem; 2009 Jun; 48(11):4927-33. PubMed ID: 19374372
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Directed Assembly of Ultrathin Gold Nanowires over Large Area by Dielectrophoresis.
    Venkatesh R; Kundu S; Pradhan A; Sai TP; Ghosh A; Ravishankar N
    Langmuir; 2015 Aug; 31(33):9246-52. PubMed ID: 26255906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct deposition of size-tunable Au nanoparticles on silicon oxide nanowires.
    Kim JH; An HH; Kim HS; Kim YH; Yoon CS
    J Colloid Interface Sci; 2009 Sep; 337(1):289-93. PubMed ID: 19477456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and characterization of bismuth single-crystalline nanowires and nanospheres.
    Wang J; Wang X; Peng Q; Li Y
    Inorg Chem; 2004 Nov; 43(23):7552-6. PubMed ID: 15530107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unconventional seed-mediated growth of ultrathin Au nanowires in aqueous solution.
    Li B; Jiang B; Tang H; Lin Z
    Chem Sci; 2015 Nov; 6(11):6349-6354. PubMed ID: 30090252
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solution-phase synthesis of single-crystalline magnetic nanowires with high aspect ratio and uniformity.
    Huang Z; Zhang Y; Tang F
    Chem Commun (Camb); 2005 Jan; (3):342-4. PubMed ID: 15645031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of selenium nanowires morphologically directed by Sinorhizobial oligosaccharides.
    Lee S; Kwon C; Park B; Jung S
    Carbohydr Res; 2009 Jul; 344(10):1230-4. PubMed ID: 19439268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Family of multifunctional layered-lanthanum crystalline nanowires with hierarchical pores: hydrothermal synthesis and applications.
    Wang PP; Bai B; Hu S; Zhuang J; Wang X
    J Am Chem Soc; 2009 Nov; 131(46):16953-60. PubMed ID: 19886618
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrathin BaTiO3 nanowires with high aspect ratio: a simple one-step hydrothermal synthesis and their strong microwave absorption.
    Yang J; Zhang J; Liang C; Wang M; Zhao P; Liu M; Liu J; Che R
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7146-51. PubMed ID: 23819434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Size- and surface-determined transformations: from ultrathin InOOH nanowires to uniform c-In2O3 nanocubes and rh-In2O3 nanowires.
    Xu X; Wang X
    Inorg Chem; 2009 Apr; 48(8):3890-5. PubMed ID: 19326893
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterostructured Bi2Se3 nanowires with periodic phase boundaries.
    Qiu X; Burda C; Fu R; Pu L; Chen H; Zhu J
    J Am Chem Soc; 2004 Dec; 126(50):16276-7. PubMed ID: 15600301
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth of ZnO nanowires catalyzed by size-dependent melting of Au nanoparticles.
    Petersen EW; Likovich EM; Russell KJ; Narayanamurti V
    Nanotechnology; 2009 Oct; 20(40):405603. PubMed ID: 19738315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The electrodeposition of high-density, ordered arrays of Bi1-xSbx nanowires.
    Prieto AL; Martín-González M; Keyani J; Gronsky R; Sands T; Stacy AM
    J Am Chem Soc; 2003 Mar; 125(9):2388-9. PubMed ID: 12603115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanotwinned gold nanowires obtained by chemical synthesis.
    Bernardi M; Raja SN; Lim SK
    Nanotechnology; 2010 Jul; 21(28):285607. PubMed ID: 20585153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.