These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 19295134)
1. Identification of microRNAs with regulatory potential using a matched microRNA-mRNA time-course data. Jayaswal V; Lutherborrow M; Ma DD; Hwa Yang Y Nucleic Acids Res; 2009 May; 37(8):e60. PubMed ID: 19295134 [TBL] [Abstract][Full Text] [Related]
2. Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers. Peng X; Li Y; Walters KA; Rosenzweig ER; Lederer SL; Aicher LD; Proll S; Katze MG BMC Genomics; 2009 Aug; 10():373. PubMed ID: 19671175 [TBL] [Abstract][Full Text] [Related]
3. Modeling microRNA-mRNA interactions using PLS regression in human colon cancer. Li X; Gill R; Cooper NG; Yoo JK; Datta S BMC Med Genomics; 2011 May; 4():44. PubMed ID: 21595958 [TBL] [Abstract][Full Text] [Related]
4. Correlation of expression profiles between microRNAs and mRNA targets using NCI-60 data. Wang YP; Li KB BMC Genomics; 2009 May; 10():218. PubMed ID: 19435500 [TBL] [Abstract][Full Text] [Related]
5. Identification of miRNA-mRNA regulatory modules by exploring collective group relationships. Masud Karim SM; Liu L; Le TD; Li J BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):7. PubMed ID: 26817421 [TBL] [Abstract][Full Text] [Related]
6. Identification of microRNA-mRNA modules using microarray data. Jayaswal V; Lutherborrow M; Ma DD; Yang YH BMC Genomics; 2011 Mar; 12():138. PubMed ID: 21375780 [TBL] [Abstract][Full Text] [Related]
7. Identifying microRNA-mRNA regulatory network in colorectal cancer by a combination of expression profile and bioinformatics analysis. Fu J; Tang W; Du P; Wang G; Chen W; Li J; Zhu Y; Gao J; Cui L BMC Syst Biol; 2012 Jun; 6():68. PubMed ID: 22703586 [TBL] [Abstract][Full Text] [Related]
8. Identification of potential miRNA-mRNA regulatory network contributing to pathogenesis of HBV-related HCC. Lou W; Liu J; Ding B; Chen D; Xu L; Ding J; Jiang D; Zhou L; Zheng S; Fan W J Transl Med; 2019 Jan; 17(1):7. PubMed ID: 30602391 [TBL] [Abstract][Full Text] [Related]
9. Identification of Metabolic Syndrome-Related miRNA-mRNA Regulatory Networks and Key Genes Based on Bioinformatics Analysis. Qiu L; Sheng P; Wang X Biochem Genet; 2023 Feb; 61(1):428-447. PubMed ID: 35877019 [TBL] [Abstract][Full Text] [Related]
10. Integrated analysis of the miRNA-mRNA next-generation sequencing data for finding their associations in different cancer types. Bhowmick SS; Bhattacharjee D; Rato L Comput Biol Chem; 2020 Feb; 84():107152. PubMed ID: 31785969 [TBL] [Abstract][Full Text] [Related]
11. Bioinformatics method to predict two regulation mechanism: TF-miRNA-mRNA and lncRNA-miRNA-mRNA in pancreatic cancer. Ye S; Yang L; Zhao X; Song W; Wang W; Zheng S Cell Biochem Biophys; 2014 Dec; 70(3):1849-58. PubMed ID: 25087086 [TBL] [Abstract][Full Text] [Related]
12. Dissecting the biological relationship between TCGA miRNA and mRNA sequencing data using MMiRNA-Viewer. Bai Y; Ding L; Baker S; Bai JM; Rath E; Jiang F; Wu J; Jiang H; Stuart G BMC Bioinformatics; 2016 Oct; 17(Suppl 13):336. PubMed ID: 27766936 [TBL] [Abstract][Full Text] [Related]
13. A mathematical model as a tool to identify microRNAs with highest impact on transcriptome changes. Mura M; Jaksik R; Lalik A; Biernacki K; Kimmel M; Rzeszowska-Wolny J; Fujarewicz K BMC Genomics; 2019 Feb; 20(1):114. PubMed ID: 30727966 [TBL] [Abstract][Full Text] [Related]
14. Serum-based six-miRNA signature as a potential marker for EC diagnosis: Comparison with TCGA miRNAseq dataset and identification of miRNA-mRNA target pairs by integrated analysis of TCGA miRNAseq and RNAseq datasets. Sharma P; Saraya A; Sharma R Asia Pac J Clin Oncol; 2018 Oct; 14(5):e289-e301. PubMed ID: 29380534 [TBL] [Abstract][Full Text] [Related]
15. Integrative Analysis of MicroRNA and mRNA Data Reveals an Orchestrated Function of MicroRNAs in Skeletal Myocyte Differentiation in Response to TNF-α or IGF1. Meyer SU; Sass S; Mueller NS; Krebs S; Bauersachs S; Kaiser S; Blum H; Thirion C; Krause S; Theis FJ; Pfaffl MW PLoS One; 2015; 10(8):e0135284. PubMed ID: 26270642 [TBL] [Abstract][Full Text] [Related]
16. Inferring microRNA-mRNA causal regulatory relationships from expression data. Le TD; Liu L; Tsykin A; Goodall GJ; Liu B; Sun BY; Li J Bioinformatics; 2013 Mar; 29(6):765-71. PubMed ID: 23365408 [TBL] [Abstract][Full Text] [Related]
17. Detection of a microRNA signal in an in vivo expression set of mRNAs. Liu T; Papagiannakopoulos T; Puskar K; Qi S; Santiago F; Clay W; Lao K; Lee Y; Nelson SF; Kornblum HI; Doyle F; Petzold L; Shraiman B; Kosik KS PLoS One; 2007 Aug; 2(8):e804. PubMed ID: 17726534 [TBL] [Abstract][Full Text] [Related]
18. A least angle regression model for the prediction of canonical and non-canonical miRNA-mRNA interactions. Engelmann JC; Spang R PLoS One; 2012; 7(7):e40634. PubMed ID: 22815777 [TBL] [Abstract][Full Text] [Related]
19. Identifying functional miRNA-mRNA regulatory modules with correspondence latent dirichlet allocation. Liu B; Liu L; Tsykin A; Goodall GJ; Green JE; Zhu M; Kim CH; Li J Bioinformatics; 2010 Dec; 26(24):3105-11. PubMed ID: 20956247 [TBL] [Abstract][Full Text] [Related]
20. Integration of MicroRNA, mRNA, and Protein Expression Data for the Identification of Cancer-Related MicroRNAs. Seo J; Jin D; Choi CH; Lee H PLoS One; 2017; 12(1):e0168412. PubMed ID: 28056026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]