These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19296557)

  • 1. Design of synthetic polymer nanoparticles that capture and neutralize a toxic peptide.
    Hoshino Y; Urakami T; Kodama T; Koide H; Oku N; Okahata Y; Shea KJ
    Small; 2009 Jul; 5(13):1562-8. PubMed ID: 19296557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rational design of a synthetic polymer nanoparticle that neutralizes a toxic peptide in vivo.
    Hoshino Y; Koide H; Furuya K; Haberaecker WW; Lee SH; Kodama T; Kanazawa H; Oku N; Shea KJ
    Proc Natl Acad Sci U S A; 2012 Jan; 109(1):33-8. PubMed ID: 22198772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of abiotic polymer nanoparticles for sequestration and neutralization of a target peptide toxin.
    Yoshimatsu K; Koide H; Hoshino Y; Shea KJ
    Nat Protoc; 2015 Apr; 10(4):595-604. PubMed ID: 25790112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide imprinted polymer nanoparticles: a plastic antibody.
    Hoshino Y; Kodama T; Okahata Y; Shea KJ
    J Am Chem Soc; 2008 Nov; 130(46):15242-3. PubMed ID: 18942788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition, neutralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: a plastic antibody.
    Hoshino Y; Koide H; Urakami T; Kanazawa H; Kodama T; Oku N; Shea KJ
    J Am Chem Soc; 2010 May; 132(19):6644-5. PubMed ID: 20420394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of Affinity Reagents to Neutralize the Hemolytic Toxicity of Melittin Based on a Self-Assembled Nanoparticle Library.
    Xu Y; Deng M; Zhang H; Tan S; Li D; Li S; Luo L; Liao G; Wang Q; Huang J; Liu J; Yang X; Wang K
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16040-16049. PubMed ID: 32174109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the Protein Corona of Hydrogel Nanoparticles: The Synthesis of Abiotic Protein and Peptide Affinity Reagents.
    O'Brien J; Shea KJ
    Acc Chem Res; 2016 Jun; 49(6):1200-10. PubMed ID: 27254382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of Synthetic Polymer Nanoparticles That Facilitate Resolubilization and Refolding of Aggregated Positively Charged Lysozyme.
    Nakamoto M; Nonaka T; Shea KJ; Miura Y; Hoshino Y
    J Am Chem Soc; 2016 Apr; 138(13):4282-5. PubMed ID: 26891855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Design of Synthetic Polymer Nanoparticles That Capture and Neutralize Target Molecules].
    Koide H
    Yakugaku Zasshi; 2021; 141(9):1079-1086. PubMed ID: 34471009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of synthetic polymer nanoparticles that inhibit glucose absorption from the intestine.
    Koide H; Hayashi N; Yasuno G; Okishima A; Hoshino Y; Egami H; Hamashima Y; Oku N; Asai T
    Biochem Biophys Res Commun; 2021 Jul; 561():1-6. PubMed ID: 34004514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational designing of an antidote nanoparticle decorated with abiotic polymer ligands for capturing and neutralizing target toxins.
    Koide H; Tsuchida H; Nakamoto M; Okishima A; Ariizumi S; Kiyokawa C; Asai T; Hoshino Y; Oku N
    J Control Release; 2017 Dec; 268():335-342. PubMed ID: 29061513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinatorial screening of polymer nanoparticles for their ability to recognize epitopes of AAV-neutralizing antibodies.
    Piletska EV; Mirkes E; Piletsky SS; Abosoglu H; Cassim A; Chu E; Doughty S; Eganda SJ; Fuchigami H; Hussein A; Olickal M; Parmar N; Sebastian A; Piletsky SA
    J Mol Recognit; 2020 Apr; 33(4):e2824. PubMed ID: 31742810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Synthetic Polymer Nanoparticles Specifically Capturing Indole, a Small Toxic Molecule.
    Okishima A; Koide H; Hoshino Y; Egami H; Hamashima Y; Oku N; Asai T
    Biomacromolecules; 2019 Apr; 20(4):1644-1654. PubMed ID: 30848887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Purification Process on the Function of Synthetic Polymer Nanoparticles.
    Yasuno G; Koide H; Oku N; Asai T
    Chem Pharm Bull (Tokyo); 2021; 69(8):773-780. PubMed ID: 34334521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of lytic peptide-bound magnetite nanoparticles in destroying breast cancer cells.
    Kumar CS; Leuschner C; Doomes EE; Henry L; Juban M; Hormes J
    J Nanosci Nanotechnol; 2004 Mar; 4(3):245-9. PubMed ID: 15233083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ELISA-mimic screen for synthetic polymer nanoparticles with high affinity to target proteins.
    Yonamine Y; Hoshino Y; Shea KJ
    Biomacromolecules; 2012 Sep; 13(9):2952-7. PubMed ID: 22813352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Functional Nanoparticles for Intractable Disease Therapy.
    Koide H
    Biol Pharm Bull; 2021; 44(1):1-6. PubMed ID: 33390535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards prostate cancer gene therapy: Development of a chlorotoxin-targeted nanovector for toxic (melittin) gene delivery.
    Tarokh Z; Naderi-Manesh H; Nazari M
    Eur J Pharm Sci; 2017 Mar; 99():209-218. PubMed ID: 28024889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer Nanoparticles with Uniform Monomer Sequences for Sequence-Specific Peptide Recognition.
    Saito Y; Honda R; Akashi S; Takimoto H; Nagao M; Miura Y; Hoshino Y
    Angew Chem Int Ed Engl; 2022 Jul; 61(30):e202206456. PubMed ID: 35567515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.