BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 19296598)

  • 1. Identification of novel antibacterial peptides by chemoinformatics and machine learning.
    Fjell CD; Jenssen H; Hilpert K; Cheung WA; Panté N; Hancock RE; Cherkasov A
    J Med Chem; 2009 Apr; 52(7):2006-15. PubMed ID: 19296598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs.
    Cherkasov A; Hilpert K; Jenssen H; Fjell CD; Waldbrook M; Mullaly SC; Volkmer R; Hancock RE
    ACS Chem Biol; 2009 Jan; 4(1):65-74. PubMed ID: 19055425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short linear cationic antimicrobial peptides: screening, optimizing, and prediction.
    Hilpert K; Fjell CD; Cherkasov A
    Methods Mol Biol; 2008; 494():127-59. PubMed ID: 18726572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence requirements and an optimization strategy for short antimicrobial peptides.
    Hilpert K; Elliott MR; Volkmer-Engert R; Henklein P; Donini O; Zhou Q; Winkler DF; Hancock RE
    Chem Biol; 2006 Oct; 13(10):1101-7. PubMed ID: 17052614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of antibacterial peptides by genetic algorithms and cheminformatics.
    Fjell CD; Jenssen H; Cheung WA; Hancock RE; Cherkasov A
    Chem Biol Drug Des; 2011 Jan; 77(1):48-56. PubMed ID: 20942839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pharmacophore of short cationic antibacterial peptides.
    Strøm MB; Haug BE; Skar ML; Stensen W; Stiberg T; Svendsen JS
    J Med Chem; 2003 Apr; 46(9):1567-70. PubMed ID: 12699374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods for building quantitative structure-activity relationship (QSAR) descriptors and predictive models for computer-aided design of antimicrobial peptides.
    Taboureau O
    Methods Mol Biol; 2010; 618():77-86. PubMed ID: 20094859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neopyrrolomycins with broad spectrum antibacterial activity.
    Hopp DC; Rhea J; Jacobsen D; Romari K; Smith C; Rabenstein J; Irigoyen M; Clarke M; Francis L; Luche M; Carr GJ; Mocek U
    J Nat Prod; 2009 Feb; 72(2):276-9. PubMed ID: 19191549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSAR analysis of antimicrobial and haemolytic effects of cyclic cationic antimicrobial peptides derived from protegrin-1.
    Frecer V
    Bioorg Med Chem; 2006 Sep; 14(17):6065-74. PubMed ID: 16714114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSAR modeling and computer-aided design of antimicrobial peptides.
    Jenssen H; Fjell CD; Cherkasov A; Hancock RE
    J Pept Sci; 2008 Jan; 14(1):110-4. PubMed ID: 17847019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifications on amphiphilicity and cationicity of unnatural amino acid containing peptides for the improvement of antimicrobial activity against pathogenic bacteria.
    Taira J; Kida Y; Yamaguchi H; Kuwano K; Higashimoto Y; Kodama H
    J Pept Sci; 2010 Nov; 16(11):607-12. PubMed ID: 20648478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fighting back: peptidomimetics as a new weapon in the battle against antibiotic resistance.
    Bragonzi A
    Sci Transl Med; 2010 Mar; 2(21):21ps9. PubMed ID: 20374995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designer antibacterial peptides kill fluoroquinolone-resistant clinical isolates.
    Otvos L; Wade JD; Lin F; Condie BA; Hanrieder J; Hoffmann R
    J Med Chem; 2005 Aug; 48(16):5349-59. PubMed ID: 16078852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple parameterization of non-proteinogenic amino acids for QSAR of antibacterial peptides.
    Lejon T; Svendsen JS; Haug BE
    J Pept Sci; 2002 Jul; 8(7):302-6. PubMed ID: 12148779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Truncated antimicrobial peptides from marine organisms retain anticancer activity and antibacterial activity against multidrug-resistant Staphylococcus aureus.
    Lin MC; Hui CF; Chen JY; Wu JL
    Peptides; 2013 Jun; 44():139-48. PubMed ID: 23598079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biological activity of antibacterial substance produced by Enterobacter cloacae B8.
    Ya-Ping J; Wei-liang C; Rong Z; Bai-rong Z
    Rinsho Biseibutshu Jinsoku Shindan Kenkyukai Shi; 2003; 13(2):115-20. PubMed ID: 14509942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure determination and total synthesis of bottromycin A2: a potent antibiotic against MRSA and VRE.
    Shimamura H; Gouda H; Nagai K; Hirose T; Ichioka M; Furuya Y; Kobayashi Y; Hirono S; Sunazuka T; Omura S
    Angew Chem Int Ed Engl; 2009; 48(5):914-7. PubMed ID: 19115340
    [No Abstract]   [Full Text] [Related]  

  • 18. Predicting antimicrobial peptides from eukaryotic genomes: in silico strategies to develop antibiotics.
    Amaral AC; Silva ON; Mundim NC; de Carvalho MJ; Migliolo L; Leite JR; Prates MV; Bocca AL; Franco OL; Felipe MS
    Peptides; 2012 Oct; 37(2):301-8. PubMed ID: 22884922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bactericidal oncocin derivatives with superior serum stabilities.
    Knappe D; Kabankov N; Hoffmann R
    Int J Antimicrob Agents; 2011 Feb; 37(2):166-70. PubMed ID: 21185160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic antimicrobial peptidomimetics with therapeutic potential.
    Haug BE; Stensen W; Kalaaji M; Rekdal Ø; Svendsen JS
    J Med Chem; 2008 Jul; 51(14):4306-14. PubMed ID: 18570363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.