These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 19296793)

  • 1. Dengue and climate change in Australia: predictions for the future should incorporate knowledge from the past.
    Russell RC; Currie BJ; Lindsay MD; Mackenzie JS; Ritchie SA; Whelan PI
    Med J Aust; 2009 Mar; 190(5):265-8. PubMed ID: 19296793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range.
    Eisen L; Moore CG
    J Med Entomol; 2013 May; 50(3):467-78. PubMed ID: 23802440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bionomic response of Aedes aegypti to two future climate change scenarios in far north Queensland, Australia: implications for dengue outbreaks.
    Williams CR; Mincham G; Ritchie SA; Viennet E; Harley D
    Parasit Vectors; 2014 Sep; 7():447. PubMed ID: 25240382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aedes (Stegomyia) albopictus--a dengue threat for southern Australia?
    Russell RC; Williams CR; Sutherst RW; Ritchie SA
    Commun Dis Intell Q Rep; 2005; 29(3):296-8. PubMed ID: 16220868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Australia's dengue risk driven by human adaptation to climate change.
    Beebe NW; Cooper RD; Mottram P; Sweeney AW
    PLoS Negl Trop Dis; 2009; 3(5):e429. PubMed ID: 19415109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of Aedes aegypti (L.) in mountainous regions in Mexico: Increasing number of population at risk of mosquito-borne disease and future climate conditions.
    Equihua M; Ibáñez-Bernal S; Benítez G; Estrada-Contreras I; Sandoval-Ruiz CA; Mendoza-Palmero FS
    Acta Trop; 2017 Feb; 166():316-327. PubMed ID: 27863974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Analysis of the Potential Impact of Climate Change on Dengue Transmission in the Southeastern United States.
    Butterworth MK; Morin CW; Comrie AC
    Environ Health Perspect; 2017 Apr; 125(4):579-585. PubMed ID: 27713106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comprehensive Entomological, Serological and Molecular Study of 2013 Dengue Outbreak of Swat, Khyber Pakhtunkhwa, Pakistan.
    Khan J; Khan I; Amin I
    PLoS One; 2016; 11(2):e0147416. PubMed ID: 26848847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic spatiotemporal trends of imported dengue fever in Australia.
    Huang X; Yakob L; Devine G; Frentiu FD; Fu SY; Hu W
    Sci Rep; 2016 Jul; 6():30360. PubMed ID: 27460696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A regional suitable conditions index to forecast the impact of climate change on dengue vectorial capacity.
    Davis C; Murphy AK; Bambrick H; Devine GJ; Frentiu FD; Yakob L; Huang X; Li Z; Yang W; Williams G; Hu W
    Environ Res; 2021 Apr; 195():110849. PubMed ID: 33561446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dengue in a changing climate.
    Ebi KL; Nealon J
    Environ Res; 2016 Nov; 151():115-123. PubMed ID: 27475051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The elimination of the dengue vector, Aedes aegypti, from Brisbane, Australia: The role of surveillance, larval habitat removal and policy.
    Trewin BJ; Darbro JM; Jansen CC; Schellhorn NA; Zalucki MP; Hurst TP; Devine GJ
    PLoS Negl Trop Dis; 2017 Aug; 11(8):e0005848. PubMed ID: 28846682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The extinction of dengue through natural vulnerability of its vectors.
    Williams CR; Bader CA; Kearney MR; Ritchie SA; Russell RC
    PLoS Negl Trop Dis; 2010 Dec; 4(12):e922. PubMed ID: 21200424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extensive public health initiatives drive the elimination of Aedes aegypti (Diptera, Culicidae) from a town in regional Queensland: A case study from Gin Gin, Australia.
    Trewin BJ; Montgomery BL; Hurst TP; Gilmore JS; Endersby-Harshman NM; Crisp GJ
    PLoS Negl Trop Dis; 2022 Apr; 16(4):e0010243. PubMed ID: 35395009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dengue vector Aedes aegypti: what comes next.
    Jansen CC; Beebe NW
    Microbes Infect; 2010 Apr; 12(4):272-9. PubMed ID: 20096802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vectors vs. humans in Australia--who is on top down under? An update on vector-borne disease and research on vectors in Australia.
    Russell RC
    J Vector Ecol; 1998 Jun; 23(1):1-46. PubMed ID: 9673928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential.
    Liu-Helmersson J; Stenlund H; Wilder-Smith A; Rocklöv J
    PLoS One; 2014; 9(3):e89783. PubMed ID: 24603439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aedes aegypti (L.) in Latin American and Caribbean region: With growing evidence for vector adaptation to climate change?
    Chadee DD; Martinez R
    Acta Trop; 2016 Apr; 156():137-43. PubMed ID: 26796862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of dengue in Sri Lanka-changes in the virus, vector, and climate.
    Sirisena PD; Noordeen F
    Int J Infect Dis; 2014 Feb; 19():6-12. PubMed ID: 24334026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urban climate versus global climate change-what makes the difference for dengue?
    Misslin R; Telle O; Daudé E; Vaguet A; Paul RE
    Ann N Y Acad Sci; 2016 Oct; 1382(1):56-72. PubMed ID: 27197685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.