These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 19296855)
1. Rational mutagenesis to support structure-based drug design: MAPKAP kinase 2 as a case study. Argiriadi MA; Sousa S; Banach D; Marcotte D; Xiang T; Tomlinson MJ; Demers M; Harris C; Kwak S; Hardman J; Pietras M; Quinn L; DiMauro J; Ni B; Mankovich J; Borhani DW; Talanian RV; Sadhukhan R BMC Struct Biol; 2009 Mar; 9():16. PubMed ID: 19296855 [TBL] [Abstract][Full Text] [Related]
2. Enabling structure-based drug design of Tyk2 through co-crystallization with a stabilizing aminoindazole inhibitor. Argiriadi MA; Goedken ER; Banach D; Borhani DW; Burchat A; Dixon RW; Marcotte D; Overmeyer G; Pivorunas V; Sadhukhan R; Sousa S; Moore NS; Tomlinson M; Voss J; Wang L; Wishart N; Woller K; Talanian RV BMC Struct Biol; 2012 Sep; 12():22. PubMed ID: 22995073 [TBL] [Abstract][Full Text] [Related]
3. Structural analysis of an MK2-inhibitor complex: insight into the regulation of the secondary structure of the Gly-rich loop by TEI-I01800. Fujino A; Fukushima K; Namiki N; Kosugi T; Takimoto-Kamimura M Acta Crystallogr D Biol Crystallogr; 2010 Jan; 66(Pt 1):80-7. PubMed ID: 20057052 [TBL] [Abstract][Full Text] [Related]
4. Structure of the β-form of human MK2 in complex with the non-selective kinase inhibitor TEI-L03090. Fujino A; Fukushima K; Kubota T; Matsumoto Y; Takimoto-Kamimura M Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Dec; 69(Pt 12):1344-8. PubMed ID: 24316826 [TBL] [Abstract][Full Text] [Related]
5. High-resolution crystal structure of human Mapkap kinase 3 in complex with a high affinity ligand. Cheng R; Felicetti B; Palan S; Toogood-Johnson I; Scheich C; Barker J; Whittaker M; Hesterkamp T Protein Sci; 2010 Jan; 19(1):168-73. PubMed ID: 19937655 [TBL] [Abstract][Full Text] [Related]
6. Structural basis for a high affinity inhibitor bound to protein kinase MK2. Hillig RC; Eberspaecher U; Monteclaro F; Huber M; Nguyen D; Mengel A; Muller-Tiemann B; Egner U J Mol Biol; 2007 Jun; 369(3):735-45. PubMed ID: 17449059 [TBL] [Abstract][Full Text] [Related]
7. Structure-based lead identification of ATP-competitive MK2 inhibitors. Barf T; Kaptein A; de Wilde S; van der Heijden R; van Someren R; Demont D; Schultz-Fademrecht C; Versteegh J; van Zeeland M; Seegers N; Kazemier B; van de Kar B; van Hoek M; de Roos J; Klop H; Smeets R; Hofstra C; Hornberg J; Oubrie A Bioorg Med Chem Lett; 2011 Jun; 21(12):3818-22. PubMed ID: 21565500 [TBL] [Abstract][Full Text] [Related]
8. Assessment of the putative binding conformation of a pyrazolopyridine class of inhibitors of MAPKAPK2 using computational studies. Miglani R; Cliffe IA; Voleti SR Eur J Med Chem; 2010 Jan; 45(1):98-105. PubMed ID: 19850376 [TBL] [Abstract][Full Text] [Related]
9. MK2: a novel molecular target for anti-inflammatory therapy. Duraisamy S; Bajpai M; Bughani U; Dastidar SG; Ray A; Chopra P Expert Opin Ther Targets; 2008 Aug; 12(8):921-36. PubMed ID: 18620516 [TBL] [Abstract][Full Text] [Related]
10. De novo design of protein kinase inhibitors by in silico identification of hinge region-binding fragments. Urich R; Wishart G; Kiczun M; Richters A; Tidten-Luksch N; Rauh D; Sherborne B; Wyatt PG; Brenk R ACS Chem Biol; 2013 May; 8(5):1044-52. PubMed ID: 23534475 [TBL] [Abstract][Full Text] [Related]
12. 2,4-Diaminopyrimidine MK2 inhibitors. Part I: Observation of an unexpected inhibitor binding mode. Argiriadi MA; Ericsson AM; Harris CM; Banach DL; Borhani DW; Calderwood DJ; Demers MD; Dimauro J; Dixon RW; Hardman J; Kwak S; Li B; Mankovich JA; Marcotte D; Mullen KD; Ni B; Pietras M; Sadhukhan R; Sousa S; Tomlinson MJ; Wang L; Xiang T; Talanian RV Bioorg Med Chem Lett; 2010 Jan; 20(1):330-3. PubMed ID: 19919896 [TBL] [Abstract][Full Text] [Related]
13. Protein expression plasmids produced rapidly: streamlining cloning protocols and robotic handling. Kornienko M; Montalvo A; Carpenter BE; Lenard M; Abeywickrema P; Hall DL; Darke PL; Kuo LC Assay Drug Dev Technol; 2005 Dec; 3(6):661-74. PubMed ID: 16438661 [TBL] [Abstract][Full Text] [Related]
14. Identification of a Novel Inhibitory Allosteric Site in p38α. Gomez-Gutierrez P; Campos PM; Vega M; Perez JJ PLoS One; 2016; 11(11):e0167379. PubMed ID: 27898710 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of the p38 alpha-MAPKAP kinase 2 heterodimer. Haar ET; Prabakhar P; Liu X; Lepre C J Biol Chem; 2007 Mar; 282(13):9733-9739. PubMed ID: 17255097 [TBL] [Abstract][Full Text] [Related]
16. The structures of salt-inducible kinase 3 in complex with inhibitors reveal determinants for binding and selectivity. Öster L; Castaldo M; de Vries E; Edfeldt F; Pemberton N; Gordon E; Cederblad L; Käck H J Biol Chem; 2024 May; 300(5):107201. PubMed ID: 38508313 [TBL] [Abstract][Full Text] [Related]
17. Using yeast surface display to engineer a soluble and crystallizable construct of hematopoietic progenitor kinase 1 (HPK1). Lau WL; Pearce B; Malakian H; Rodrigo I; Xie D; Gao M; Marsilio F; Chang C; Ruzanov M; Muckelbauer JK; Newitt JA; Lipovšek D; Sheriff S Acta Crystallogr F Struct Biol Commun; 2021 Jan; 77(Pt 1):22-28. PubMed ID: 33439152 [TBL] [Abstract][Full Text] [Related]
18. Identifying protein construct variants with increased crystallization propensity--a case study. Malawski GA; Hillig RC; Monteclaro F; Eberspaecher U; Schmitz AA; Crusius K; Huber M; Egner U; Donner P; Müller-Tiemann B Protein Sci; 2006 Dec; 15(12):2718-28. PubMed ID: 17132859 [TBL] [Abstract][Full Text] [Related]