BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19297148)

  • 21. Metabolic engineering of a novel Klebsiella oxytoca strain for enhanced 2,3-butanediol production.
    Kim DK; Rathnasingh C; Song H; Lee HJ; Seung D; Chang YK
    J Biosci Bioeng; 2013 Aug; 116(2):186-92. PubMed ID: 23643345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rhamsan gum production by Sphingomonas sp. CGMCC 6833 using a two-stage agitation speed control strategy.
    Xu XY; Zhu P; Li S; Chen XY; Jiang XH; Xu H
    Biotechnol Appl Biochem; 2014; 61(4):453-8. PubMed ID: 24354661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient 2,3-butanediol production from whey powder using metabolically engineered Klebsiella oxytoca.
    Meng W; Zhang Y; Cao M; Zhang W; Lü C; Yang C; Gao C; Xu P; Ma C
    Microb Cell Fact; 2020 Aug; 19(1):162. PubMed ID: 32778112
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of an industrial medium for economical 2,3-butanediol production through co-fermentation of glucose and xylose by Klebsiella oxytoca.
    Ji XJ; Huang H; Du J; Zhu JG; Ren LJ; Li S; Nie ZK
    Bioresour Technol; 2009 Nov; 100(21):5214-8. PubMed ID: 19527928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced riboflavin production by recombinant Bacillus subtilis RF1 through the optimization of agitation speed.
    Man ZW; Rao ZM; Cheng YP; Yang TW; Zhang X; Xu MJ; Xu ZH
    World J Microbiol Biotechnol; 2014 Feb; 30(2):661-7. PubMed ID: 24068533
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient L-valine production using systematically metabolic engineered Klebsiella oxytoca.
    Cao M; Sun W; Wang S; Di H; Du Q; Tan X; Meng W; Kang Z; Liu Y; Xu P; Lü C; Ma C; Gao C
    Bioresour Technol; 2024 Mar; 395():130403. PubMed ID: 38295958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancement of pyruvate production by Torulopsis glabrata using a two-stage oxygen supply control strategy.
    Li Y; Hugenholtz J; Chen J; Lun SY
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):101-6. PubMed ID: 12382048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced 2,3-butanediol production by altering the mixed acid fermentation pathway in Klebsiella oxytoca.
    Ji XJ; Huang H; Li S; Du J; Lian M
    Biotechnol Lett; 2008 Apr; 30(4):731-4. PubMed ID: 18008166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of various process parameters on morphology, rheology, and polygalacturonase production by Aspergillus sojae in a batch bioreactor.
    Oncu S; Tari C; Unluturk S
    Biotechnol Prog; 2007; 23(4):836-45. PubMed ID: 17585778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM.
    Ma C; Wang A; Qin J; Li L; Ai X; Jiang T; Tang H; Xu P
    Appl Microbiol Biotechnol; 2009 Feb; 82(1):49-57. PubMed ID: 18949476
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of 2,3-butanediol from acid hydrolysates of Jatropha hulls with Klebsiella oxytoca.
    Jiang LQ; Fang Z; Guo F; Yang LB
    Bioresour Technol; 2012 Mar; 107():405-10. PubMed ID: 22230777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adaptive laboratory evolution of Klebsiella pneumoniae for improving 2,3-butanediol production.
    Li H; Zhang G; Dang Y
    Bioengineered; 2016 Nov; 7(6):432-438. PubMed ID: 27442598
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of pathogenic factors from 2,3-butanediol-producing Klebsiella species by inactivating virulence-related wabG gene.
    Jung SG; Jang JH; Kim AY; Lim MC; Kim B; Lee J; Kim YR
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):1997-2007. PubMed ID: 22832986
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel strategy for integrated utilization of Jerusalem artichoke stalk and tuber for production of 2,3-butanediol by Klebsiella pneumoniae.
    Li D; Dai JY; Xiu ZL
    Bioresour Technol; 2010 Nov; 101(21):8342-7. PubMed ID: 20591660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens.
    Zhang Y; Li S; Liu L; Wu J
    Bioresour Technol; 2013 Feb; 130():256-60. PubMed ID: 23306133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of docosahexaenoic acid production by Schizochytrium sp. using a two-stage oxygen supply control strategy based on oxygen transfer coefficient.
    Qu L; Ji XJ; Ren LJ; Nie ZK; Feng Y; Wu WJ; Ouyang PK; Huang H
    Lett Appl Microbiol; 2011 Jan; 52(1):22-7. PubMed ID: 21070268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective production of 2,3-butanediol and acetoin by a newly isolated bacterium Klebsiella oxytoca M1.
    Cho S; Kim KD; Ahn JH; Lee J; Kim SW; Um Y
    Appl Biochem Biotechnol; 2013 Aug; 170(8):1922-33. PubMed ID: 23793864
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium.
    Jantama K; Polyiam P; Khunnonkwao P; Chan S; Sangproo M; Khor K; Jantama SS; Kanchanatawee S
    Metab Eng; 2015 Jul; 30():16-26. PubMed ID: 25895450
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations.
    Petrov K; Petrova P
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):943-9. PubMed ID: 20361325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering of Klebsiella oxytoca for production of 2,3-butanediol via simultaneous utilization of sugars from a Golenkinia sp. hydrolysate.
    Park JH; Choi MA; Kim YJ; Kim YC; Chang YK; Jeong KJ
    Bioresour Technol; 2017 Dec; 245(Pt B):1386-1392. PubMed ID: 28601394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.