These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
992 related articles for article (PubMed ID: 19297150)
21. Continuous ethanol fermentation from non-sulfuric acid-washed molasses using traditional stirred tank reactors and the flocculating yeast strain KF-7. Tang YQ; An MZ; Zhong YL; Shigeru M; Wu XL; Kida K J Biosci Bioeng; 2010 Jan; 109(1):41-6. PubMed ID: 20129080 [TBL] [Abstract][Full Text] [Related]
22. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Najafpour G; Younesi H; Syahidah Ku Ismail K Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158 [TBL] [Abstract][Full Text] [Related]
23. Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5. Wang X; Jin B J Biosci Bioeng; 2009 Feb; 107(2):138-44. PubMed ID: 19217551 [TBL] [Abstract][Full Text] [Related]
24. Butanol production from cane molasses by Clostridium saccharobutylicum DSM 13864: batch and semicontinuous fermentation. Ni Y; Wang Y; Sun Z Appl Biochem Biotechnol; 2012 Apr; 166(8):1896-907. PubMed ID: 22362519 [TBL] [Abstract][Full Text] [Related]
25. Bacterial cellulose production by fed-batch fermentation in molasses medium. Bae S; Shoda M Biotechnol Prog; 2004; 20(5):1366-71. PubMed ID: 15458319 [TBL] [Abstract][Full Text] [Related]
26. Ethanol fermentation in a magnetically fluidized bed reactor with immobilized Saccharomyces cerevisiae in magnetic particles. Liu CZ; Wang F; Ou-Yang F Bioresour Technol; 2009 Jan; 100(2):878-82. PubMed ID: 18760598 [TBL] [Abstract][Full Text] [Related]
27. Adaptive evolution for fast growth on glucose and the effects on the regulation of glucose transport system in Clostridium tyrobutyricum. Jiang L; Li S; Hu Y; Xu Q; Huang H Biotechnol Bioeng; 2012 Mar; 109(3):708-18. PubMed ID: 21956266 [TBL] [Abstract][Full Text] [Related]
28. Effects of ptb knockout on butyric acid fermentation by Clostridium tyrobutyricum. Zhang Y; Yu M; Yang ST Biotechnol Prog; 2012; 28(1):52-9. PubMed ID: 22038864 [TBL] [Abstract][Full Text] [Related]
29. Construction and characterization of pta gene-deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid fermentation. Zhu Y; Liu X; Yang ST Biotechnol Bioeng; 2005 Apr; 90(2):154-66. PubMed ID: 15759261 [TBL] [Abstract][Full Text] [Related]
30. Adaptation of Clostridium tyrobutyricum for enhanced tolerance to butyric acid in a fibrous-bed bioreactor. Zhu Y; Yang ST Biotechnol Prog; 2003; 19(2):365-72. PubMed ID: 12675573 [TBL] [Abstract][Full Text] [Related]
31. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production with high butyrate/acetate ratio. Suo Y; Ren M; Yang X; Liao Z; Fu H; Wang J Appl Microbiol Biotechnol; 2018 May; 102(10):4511-4522. PubMed ID: 29627851 [TBL] [Abstract][Full Text] [Related]
32. Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Ezeji TC; Qureshi N; Blaschek HP Appl Microbiol Biotechnol; 2004 Feb; 63(6):653-8. PubMed ID: 12910325 [TBL] [Abstract][Full Text] [Related]
33. Agar immobilized yeast cells in tubular reactor for ethanol production. Nigam JN; Gogoi BK; Bezbaruah RL Indian J Exp Biol; 1998 Aug; 36(8):816-9. PubMed ID: 9838885 [TBL] [Abstract][Full Text] [Related]
34. Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor. Kwon SG; Park SW; Oh DK J Biosci Bioeng; 2006 Jan; 101(1):13-8. PubMed ID: 16503285 [TBL] [Abstract][Full Text] [Related]
35. Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid. Jang YS; Woo HM; Im JA; Kim IH; Lee SY Appl Microbiol Biotechnol; 2013 Nov; 97(21):9355-63. PubMed ID: 24013291 [TBL] [Abstract][Full Text] [Related]
36. [Engineering and metabolic characteristics of a Clostridium tyrobutyricum strain]. Yang G; Liu G; Yang C Sheng Wu Gong Cheng Xue Bao; 2010 Feb; 26(2):170-6. PubMed ID: 20432934 [TBL] [Abstract][Full Text] [Related]
37. Efficient production of l-lactic acid from hydrolysate of Jerusalem artichoke with immobilized cells of Lactococcus lactis in fibrous bed bioreactors. Shi Z; Wei P; Zhu X; Cai J; Huang L; Xu Z Enzyme Microb Technol; 2012 Oct; 51(5):263-8. PubMed ID: 22975123 [TBL] [Abstract][Full Text] [Related]
38. Biohydrogen production by mesophilic fermentation of food wastewater. Wu JH; Lin CY Water Sci Technol; 2004; 49(5-6):223-8. PubMed ID: 15137427 [TBL] [Abstract][Full Text] [Related]
39. Enhanced poly(L-malic acid) production from pretreated cane molasses by Aureobasidium pullulans in fed-batch fermentation. Xia J; Xu J; Hu L; Liu X Prep Biochem Biotechnol; 2016 Nov; 46(8):798-802. PubMed ID: 26829650 [TBL] [Abstract][Full Text] [Related]
40. Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing xylose catabolism genes for glucose and xylose co-utilization. Fu H; Yang ST; Wang M; Wang J; Tang IC Bioresour Technol; 2017 Jun; 234():389-396. PubMed ID: 28343058 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]