These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 19297320)

  • 1. Adenosine signaling mediates SUMO-1 modification of IkappaBalpha during hypoxia and reoxygenation.
    Liu Q; Li J; Khoury J; Colgan SP; Ibla JC
    J Biol Chem; 2009 May; 284(20):13686-13695. PubMed ID: 19297320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterologous SUMO-2/3-ubiquitin chains optimize IκBα degradation and NF-κB activity.
    Aillet F; Lopitz-Otsoa F; Egaña I; Hjerpe R; Fraser P; Hay RT; Rodriguez MS; Lang V
    PLoS One; 2012; 7(12):e51672. PubMed ID: 23284737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification of SUMO-1 modified IκBα and complex formation with NF-κB.
    Lens Z; Dewitte F; Van Lint C; de Launoit Y; Villeret V; Verger A
    Protein Expr Purif; 2011 Dec; 80(2):211-6. PubMed ID: 21708266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. At the crossroads of SUMO and NF-kappaB.
    Kracklauer MP; Schmidt C
    Mol Cancer; 2003 Nov; 2():39. PubMed ID: 14613580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation.
    Desterro JM; Rodriguez MS; Hay RT
    Mol Cell; 1998 Aug; 2(2):233-9. PubMed ID: 9734360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein kinase D, ubiquitin and proteasome pathways are involved in adenosine receptor-stimulated NR4A expression in myeloid cells.
    Giffney HE; Cummins EP; Murphy EP; Brayden DJ; Crean D
    Biochem Biophys Res Commun; 2021 May; 555():19-25. PubMed ID: 33812054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hypoxic episode during cardiogenesis downregulates the adenosinergic system and alters the myocardial anoxic tolerance.
    Robin E; Marcillac F; Raddatz E
    Am J Physiol Regul Integr Comp Physiol; 2015 Apr; 308(7):R614-26. PubMed ID: 25632022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyrosine kinase p56lck regulates cell motility and nuclear factor kappaB-mediated secretion of urokinase type plasminogen activator through tyrosine phosphorylation of IkappaBalpha following hypoxia/reoxygenation.
    Mahabeleshwar GH; Kundu GC
    J Biol Chem; 2003 Dec; 278(52):52598-612. PubMed ID: 14534291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antiinflammatory adaptation to hypoxia through adenosine-mediated cullin-1 deneddylation.
    Khoury J; Ibla JC; Neish AS; Colgan SP
    J Clin Invest; 2007 Mar; 117(3):703-11. PubMed ID: 17318263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin D receptor deletion leads to reduced level of IkappaBalpha protein through protein translation, protein-protein interaction, and post-translational modification.
    Wu S; Xia Y; Liu X; Sun J
    Int J Biochem Cell Biol; 2010 Feb; 42(2):329-36. PubMed ID: 19931640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenosine suppresses activation of nuclear factor-kappaB selectively induced by tumor necrosis factor in different cell types.
    Majumdar S; Aggarwal BB
    Oncogene; 2003 Feb; 22(8):1206-18. PubMed ID: 12606947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-activation of the adenosine A2a receptors inhibits IL-12 production by human monocytes.
    Link AA; Kino T; Worth JA; McGuire JL; Crane ML; Chrousos GP; Wilder RL; Elenkov IJ
    J Immunol; 2000 Jan; 164(1):436-42. PubMed ID: 10605040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bcl-2 activates the transcription factor NFkappaB through the degradation of the cytoplasmic inhibitor IkappaBalpha.
    de Moissac D; Mustapha S; Greenberg AH; Kirshenbaum LA
    J Biol Chem; 1998 Sep; 273(37):23946-51. PubMed ID: 9727009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of hypoxia-induced NF-kappaB.
    Culver C; Sundqvist A; Mudie S; Melvin A; Xirodimas D; Rocha S
    Mol Cell Biol; 2010 Oct; 30(20):4901-21. PubMed ID: 20696840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the regulatory roles of the SUMO.
    Hwang KW; Won TJ; Kim H; Chun HJ; Chun T; Park Y
    Diabetes Metab Res Rev; 2011 Nov; 27(8):854-61. PubMed ID: 22069273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7, and 9 and adenosine A(2A) receptors.
    Pinhal-Enfield G; Ramanathan M; Hasko G; Vogel SN; Salzman AL; Boons GJ; Leibovich SJ
    Am J Pathol; 2003 Aug; 163(2):711-21. PubMed ID: 12875990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methotrexate suppresses NF-kappaB activation through inhibition of IkappaBalpha phosphorylation and degradation.
    Majumdar S; Aggarwal BB
    J Immunol; 2001 Sep; 167(5):2911-20. PubMed ID: 11509639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erratum to ‘‘Characterization of the regulatory roles of the SUMO.
    Hwang KW; Won TJ; Kim H; Chun HJ; Chun T; Park Y
    Diabetes Metab Res Rev; 2012 Feb; 28(2):196-202. PubMed ID: 22423385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenosine increases LPS-induced nuclear factor kappa B activation in smooth muscle cells via an intracellular mechanism and modulates it via actions on adenosine receptors.
    Yang J; Zheng X; Haugen F; Darè E; Lövdahl C; Schulte G; Fredholm BB; Valen G
    Acta Physiol (Oxf); 2014 Mar; 210(3):590-9. PubMed ID: 24119187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mouse small ubiquitin-like modifier-2 (SUMO-2) inhibits interleukin-12 (IL-12) production in mature dendritic cells by blocking the translocation of the p65 subunit of NFκB into the nucleus.
    Kim EM; Lee HH; Kim SH; Son YO; Lee SJ; Han J; Bae J; Kim SJ; Park CG; Park Y; Hwang KW; Chun T
    Mol Immunol; 2011 Sep; 48(15-16):2189-97. PubMed ID: 21632113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.