BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 19298223)

  • 21. Iron chelators induce autophagic cell death in multiple myeloma cells.
    Pullarkat V; Meng Z; Donohue C; Yamamoto VN; Tomassetti S; Bhatia R; Krishnan A; Forman SJ; Synold TW
    Leuk Res; 2014 Aug; 38(8):988-96. PubMed ID: 24998390
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The iron chelator deferasirox affects redox signalling in haematopoietic stem/progenitor cells.
    Tataranni T; Agriesti F; Mazzoccoli C; Ruggieri V; Scrima R; Laurenzana I; D'Auria F; Falzetti F; Di Ianni M; Musto P; Capitanio N; Piccoli C
    Br J Haematol; 2015 Jul; 170(2):236-46. PubMed ID: 25825160
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron depletion suppresses mTORC1-directed signalling in intestinal Caco-2 cells via induction of REDD1.
    Watson A; Lipina C; McArdle HJ; Taylor PM; Hundal HS
    Cell Signal; 2016 May; 28(5):412-424. PubMed ID: 26827808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways.
    Majumder PK; Febbo PG; Bikoff R; Berger R; Xue Q; McMahon LM; Manola J; Brugarolas J; McDonnell TJ; Golub TR; Loda M; Lane HA; Sellers WR
    Nat Med; 2004 Jun; 10(6):594-601. PubMed ID: 15156201
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The iron chelator deferasirox induces apoptosis by targeting oncogenic Pyk2/β-catenin signaling in human multiple myeloma.
    Kamihara Y; Takada K; Sato T; Kawano Y; Murase K; Arihara Y; Kikuchi S; Hayasaka N; Usami M; Iyama S; Miyanishi K; Sato Y; Kobune M; Kato J
    Oncotarget; 2016 Sep; 7(39):64330-64341. PubMed ID: 27602957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of the antitumoral activity of deferasirox, an iron chelation agent, on mantle cell lymphoma.
    Vazana-Barad L; Granot G; Mor-Tzuntz R; Levi I; Dreyling M; Nathan I; Shpilberg O
    Leuk Lymphoma; 2013 Apr; 54(4):851-9. PubMed ID: 23020673
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deferasirox is a powerful NF-kappaB inhibitor in myelodysplastic cells and in leukemia cell lines acting independently from cell iron deprivation by chelation and reactive oxygen species scavenging.
    Messa E; Carturan S; Maffè C; Pautasso M; Bracco E; Roetto A; Messa F; Arruga F; Defilippi I; Rosso V; Zanone C; Rotolo A; Greco E; Pellegrino RM; Alberti D; Saglio G; Cilloni D
    Haematologica; 2010 Aug; 95(8):1308-16. PubMed ID: 20534700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estrogen-induced activation of mammalian target of rapamycin is mediated via tuberin and the small GTPase Ras homologue enriched in brain.
    Yu J; Henske EP
    Cancer Res; 2006 Oct; 66(19):9461-6. PubMed ID: 17018601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sorafenib induces apoptotic cell death in human non-small cell lung cancer cells by down-regulating mammalian target of rapamycin (mTOR)-dependent survivin expression.
    Kim YS; Jin HO; Seo SK; Woo SH; Choe TB; An S; Hong SI; Lee SJ; Lee KH; Park IC
    Biochem Pharmacol; 2011 Aug; 82(3):216-26. PubMed ID: 21601561
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deferasirox (ICL670A) effectively inhibits oesophageal cancer growth in vitro and in vivo.
    Ford SJ; Obeidy P; Lovejoy DB; Bedford M; Nichols L; Chadwick C; Tucker O; Lui GY; Kalinowski DS; Jansson PJ; Iqbal TH; Alderson D; Richardson DR; Tselepis C
    Br J Pharmacol; 2013 Mar; 168(6):1316-28. PubMed ID: 23126308
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activating transcription factor 4 and CCAAT/enhancer-binding protein-beta negatively regulate the mammalian target of rapamycin via Redd1 expression in response to oxidative and endoplasmic reticulum stress.
    Jin HO; Seo SK; Woo SH; Kim ES; Lee HC; Yoo DH; An S; Choe TB; Lee SJ; Hong SI; Rhee CH; Kim JI; Park IC
    Free Radic Biol Med; 2009 Apr; 46(8):1158-67. PubMed ID: 19439225
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex.
    Brugarolas J; Lei K; Hurley RL; Manning BD; Reiling JH; Hafen E; Witters LA; Ellisen LW; Kaelin WG
    Genes Dev; 2004 Dec; 18(23):2893-904. PubMed ID: 15545625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zoledronic acid-induced cytotoxicity through endoplasmic reticulum stress triggered REDD1-mTOR pathway in breast cancer cells.
    Lan YC; Chang CL; Sung MT; Yin PH; Hsu CC; Wang KC; Lee HC; Tseng LM; Chi CW
    Anticancer Res; 2013 Sep; 33(9):3807-14. PubMed ID: 24023313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tuberin, p27 and mTOR in different cells.
    Burgstaller S; Rosner M; Lindengrün C; Hanneder M; Siegel N; Valli A; Fuchs C; Hengstschläger M
    Amino Acids; 2009 Feb; 36(2):297-302. PubMed ID: 18386114
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TXNIP potentiates Redd1-induced mTOR suppression through stabilization of Redd1.
    Jin HO; Seo SK; Kim YS; Woo SH; Lee KH; Yi JY; Lee SJ; Choe TB; Lee JH; An S; Hong SI; Park IC
    Oncogene; 2011 Sep; 30(35):3792-801. PubMed ID: 21460850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bcr-Abl kinase modulates the translation regulators ribosomal protein S6 and 4E-BP1 in chronic myelogenous leukemia cells via the mammalian target of rapamycin.
    Ly C; Arechiga AF; Melo JV; Walsh CM; Ong ST
    Cancer Res; 2003 Sep; 63(18):5716-22. PubMed ID: 14522890
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapamycin provides a therapeutic option through inhibition of mTOR signaling in chronic myelogenous leukemia.
    Li J; Xue L; Hao H; Han Y; Yang J; Luo J
    Oncol Rep; 2012 Feb; 27(2):461-6. PubMed ID: 21993902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alteration of REDD1-mediated mammalian target of rapamycin pathway and hypoxia-inducible factor-1α regulation in human breast cancer.
    Koo JS; Jung W
    Pathobiology; 2010; 77(6):289-300. PubMed ID: 21266827
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iron chelation therapy as a treatment for Pythium insidiosum in an animal model.
    Zanette RA; Alves SH; Pilotto MB; Weiblen C; Fighera RA; Wolkmer P; Flores MM; Santurio JM
    J Antimicrob Chemother; 2013 May; 68(5):1144-7. PubMed ID: 23329785
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interleukin-8 signaling promotes translational regulation of cyclin D in androgen-independent prostate cancer cells.
    MacManus CF; Pettigrew J; Seaton A; Wilson C; Maxwell PJ; Berlingeri S; Purcell C; McGurk M; Johnston PG; Waugh DJ
    Mol Cancer Res; 2007 Jul; 5(7):737-48. PubMed ID: 17606477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.