BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 19298368)

  • 21. A complex mechanism determines polarity of DNA replication fork arrest by the replication terminator complex of Bacillus subtilis.
    Duggin IG; Matthews JM; Dixon NE; Wake RG; Mackay JP
    J Biol Chem; 2005 Apr; 280(13):13105-13. PubMed ID: 15657033
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanistic studies on the impact of transcription on sequence-specific termination of DNA replication and vice versa.
    Mohanty BK; Sahoo T; Bastia D
    J Biol Chem; 1998 Jan; 273(5):3051-9. PubMed ID: 9446621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The mating type switch-activating protein Sap1 Is required for replication fork arrest at the rRNA genes of fission yeast.
    Mejía-Ramírez E; Sánchez-Gorostiaga A; Krimer DB; Schvartzman JB; Hernández P
    Mol Cell Biol; 2005 Oct; 25(19):8755-61. PubMed ID: 16166653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional specificity of the replication fork-arrest complexes of Bacillus subtilis and Escherichia coli: significant specificity for Tus-Ter functioning in E. coli.
    Andersen PA; Griffiths AA; Duggin IG; Wake RG
    Mol Microbiol; 2000 Jun; 36(6):1327-35. PubMed ID: 10931283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A molecular mousetrap determines polarity of termination of DNA replication in E. coli.
    Mulcair MD; Schaeffer PM; Oakley AJ; Cross HF; Neylon C; Hill TM; Dixon NE
    Cell; 2006 Jun; 125(7):1309-19. PubMed ID: 16814717
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutational bias suggests that replication termination occurs near the dif site, not at Ter sites.
    Hendrickson H; Lawrence JG
    Mol Microbiol; 2007 Apr; 64(1):42-56. PubMed ID: 17376071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA damage-induced replication fork regression and processing in Escherichia coli.
    Courcelle J; Donaldson JR; Chow KH; Courcelle CT
    Science; 2003 Feb; 299(5609):1064-7. PubMed ID: 12543983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Replication terminator protein-based replication fork-arrest systems in various Bacillus species.
    Griffiths AA; Andersen PA; Wake RG
    J Bacteriol; 1998 Jul; 180(13):3360-7. PubMed ID: 9642188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Escherichia coli Tus-Ter replication fork barrier causes site-specific DNA replication perturbation in yeast.
    Larsen NB; Sass E; Suski C; Mankouri HW; Hickson ID
    Nat Commun; 2014 Apr; 5():3574. PubMed ID: 24705096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential Tus-Ter binding and lock formation: implications for DNA replication termination in Escherichia coli.
    Moreau MJ; Schaeffer PM
    Mol Biosyst; 2012 Oct; 8(10):2783-91. PubMed ID: 22859262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Termination of DNA replication in vitro: requirement for stereospecific interaction between two dimers of the replication terminator protein of Bacillus subtilis and with the terminator site to elicit polar contrahelicase and fork impedance.
    Sahoo T; Mohanty BK; Patel I; Bastia D
    EMBO J; 1995 Feb; 14(3):619-28. PubMed ID: 7859750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reorganization of terminator DNA upon binding replication terminator protein: implications for the functional replication fork arrest complex.
    Kralicek AV; Wilson PK; Ralston GB; Wake RG; King GF
    Nucleic Acids Res; 1997 Feb; 25(3):590-6. PubMed ID: 9016600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polar arrest of the simian virus 40 tumor antigen-mediated replication fork movement in vitro by the tus protein-terB complex of Escherichia coli.
    Amin AA; Hurwitz J
    J Biol Chem; 1992 Sep; 267(26):18612-22. PubMed ID: 1326530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Escherichia coli UvrD helicase is essential for Tus removal during recombination-dependent replication restart from Ter sites.
    Bidnenko V; Lestini R; Michel B
    Mol Microbiol; 2006 Oct; 62(2):382-96. PubMed ID: 17020578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Termination structures in the Escherichia coli chromosome replication fork trap.
    Duggin IG; Bell SD
    J Mol Biol; 2009 Apr; 387(3):532-9. PubMed ID: 19233209
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative analysis of nucleotide modulation of DNA binding by DnaC protein of Escherichia coli.
    Biswas SB; Flowers S; Biswas-Fiss EE
    Biochem J; 2004 May; 379(Pt 3):553-62. PubMed ID: 14715083
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-localization of polar replication fork barriers and rRNA transcription terminators in mouse rDNA.
    López-estraño C; Schvartzman JB; Krimer DB; Hernández P
    J Mol Biol; 1998 Mar; 277(2):249-56. PubMed ID: 9514756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A fork-clearing role for UvrD.
    Florés MJ; Sanchez N; Michel B
    Mol Microbiol; 2005 Sep; 57(6):1664-75. PubMed ID: 16135232
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Definition and polarity of action of DNA replication terminators in Bacillus subtilis.
    Smith MT; Wake RG
    J Mol Biol; 1992 Oct; 227(3):648-57. PubMed ID: 1404381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A DNA replication-arrest site RTS1 regulates imprinting by determining the direction of replication at mat1 in S. pombe.
    Dalgaard JZ; Klar AJ
    Genes Dev; 2001 Aug; 15(16):2060-8. PubMed ID: 11511538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.