These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19298493)

  • 1. The cost of multiple drug resistance in Pseudomonas aeruginosa.
    Ward H; Perron GG; Maclean RC
    J Evol Biol; 2009 May; 22(5):997-1003. PubMed ID: 19298493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epistasis buffers the fitness effects of rifampicin- resistance mutations in Pseudomonas aeruginosa.
    Hall AR; MacLean RC
    Evolution; 2011 Aug; 65(8):2370-9. PubMed ID: 21790582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diminishing returns from beneficial mutations and pervasive epistasis shape the fitness landscape for rifampicin resistance in Pseudomonas aeruginosa.
    MacLean RC; Perron GG; Gardner A
    Genetics; 2010 Dec; 186(4):1345-54. PubMed ID: 20876562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multidrug-resistant bacteria compensate for the epistasis between resistances.
    Moura de Sousa J; Balbontín R; Durão P; Gordo I
    PLoS Biol; 2017 Apr; 15(4):e2001741. PubMed ID: 28419091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance.
    Durão P; Balbontín R; Gordo I
    Trends Microbiol; 2018 Aug; 26(8):677-691. PubMed ID: 29439838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypermutability and compensatory adaptation in antibiotic-resistant bacteria.
    Perron GG; Hall AR; Buckling A
    Am Nat; 2010 Sep; 176(3):303-11. PubMed ID: 20624092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple Resistance at No Cost: Rifampicin and Streptomycin a Dangerous Liaison in the Spread of Antibiotic Resistance.
    Durão P; Trindade S; Sousa A; Gordo I
    Mol Biol Evol; 2015 Oct; 32(10):2675-80. PubMed ID: 26130082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental variation alters the fitness effects of rifampicin resistance mutations in Pseudomonas aeruginosa.
    Gifford DR; Moss E; MacLean RC
    Evolution; 2016 Mar; 70(3):725-30. PubMed ID: 26880677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of the fitness impacts on Escherichia coli of acquisition of antibiotic resistance genes encoded by different types of genetic element.
    Enne VI; Delsol AA; Davis GR; Hayward SL; Roe JM; Bennett PM
    J Antimicrob Chemother; 2005 Sep; 56(3):544-51. PubMed ID: 16040624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary reversals of antibiotic resistance in experimental populations of Pseudomonas aeruginosa.
    Gifford DR; MacLean RC
    Evolution; 2013 Oct; 67(10):2973-81. PubMed ID: 24094347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting epistasis: an experimental test of metabolic control theory with bacterial transcription and translation.
    MacLean RC
    J Evol Biol; 2010 Mar; 23(3):488-93. PubMed ID: 20070461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linking system-wide impacts of RNA polymerase mutations to the fitness cost of rifampin resistance in Pseudomonas aeruginosa.
    Qi Q; Preston GM; MacLean RC
    mBio; 2014 Dec; 5(6):e01562. PubMed ID: 25491352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epistatic interactions between ancestral genotype and beneficial mutations shape evolvability in Pseudomonas aeruginosa.
    Gifford DR; Toll-Riera M; MacLean RC
    Evolution; 2016 Jul; 70(7):1659-66. PubMed ID: 27230588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced expression of virulence factors in multidrug-resistant Pseudomonas aeruginosa strains.
    Deptuła A; Gospodarek E
    Arch Microbiol; 2010 Jan; 192(1):79-84. PubMed ID: 19960337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa.
    Kugelberg E; Löfmark S; Wretlind B; Andersson DI
    J Antimicrob Chemother; 2005 Jan; 55(1):22-30. PubMed ID: 15574475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epistasis between antibiotic resistance mutations and genetic background shape the fitness effect of resistance across species of Pseudomonas.
    Vogwill T; Kojadinovic M; MacLean RC
    Proc Biol Sci; 2016 May; 283(1830):. PubMed ID: 27170722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative epistasis between beneficial mutations in an evolving bacterial population.
    Khan AI; Dinh DM; Schneider D; Lenski RE; Cooper TF
    Science; 2011 Jun; 332(6034):1193-6. PubMed ID: 21636772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fitness epistasis among 6 biosynthetic loci in the budding yeast Saccharomyces cerevisiae.
    Hall DW; Agan M; Pope SC
    J Hered; 2010; 101 Suppl 1():S75-84. PubMed ID: 20194517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fitness cost of rifampicin resistance in Pseudomonas aeruginosa depends on demand for RNA polymerase.
    Hall AR; Iles JC; MacLean RC
    Genetics; 2011 Mar; 187(3):817-22. PubMed ID: 21220359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rifampicin resistance and its fitness cost in Enterococcus faecium.
    Enne VI; Delsol AA; Roe JM; Bennett PM
    J Antimicrob Chemother; 2004 Feb; 53(2):203-7. PubMed ID: 14688044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.