These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19298603)

  • 1. Stanniocalcin 2 overexpression in castration-resistant prostate cancer and aggressive prostate cancer.
    Tamura K; Furihata M; Chung SY; Uemura M; Yoshioka H; Iiyama T; Ashida S; Nasu Y; Fujioka T; Shuin T; Nakamura Y; Nakagawa H
    Cancer Sci; 2009 May; 100(5):914-9. PubMed ID: 19298603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles.
    Tamura K; Furihata M; Tsunoda T; Ashida S; Takata R; Obara W; Yoshioka H; Daigo Y; Nasu Y; Kumon H; Konaka H; Namiki M; Tozawa K; Kohri K; Tanji N; Yokoyama M; Shimazui T; Akaza H; Mizutani Y; Miki T; Fujioka T; Shuin T; Nakamura Y; Nakagawa H
    Cancer Res; 2007 Jun; 67(11):5117-25. PubMed ID: 17545589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpressing PKIB in prostate cancer promotes its aggressiveness by linking between PKA and Akt pathways.
    Chung S; Furihata M; Tamura K; Uemura M; Daigo Y; Nasu Y; Miki T; Shuin T; Fujioka T; Nakamura Y; Nakagawa H
    Oncogene; 2009 Aug; 28(32):2849-59. PubMed ID: 19483721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of kinases regulating prostate cancer cell growth using an RNAi phenotypic screen.
    Whitworth H; Bhadel S; Ivey M; Conaway M; Spencer A; Hernan R; Holemon H; Gioeli D
    PLoS One; 2012; 7(6):e38950. PubMed ID: 22761715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peroxiredoxin 2 in the nucleus and cytoplasm distinctly regulates androgen receptor activity in prostate cancer cells.
    Shiota M; Yokomizo A; Kashiwagi E; Takeuchi A; Fujimoto N; Uchiumi T; Naito S
    Free Radic Biol Med; 2011 Jul; 51(1):78-87. PubMed ID: 21539911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ubiquitin-like molecule interferon-stimulated gene 15 is overexpressed in human prostate cancer.
    Satake H; Tamura K; Furihata M; Anchi T; Sakoda H; Kawada C; Iiyama T; Ashida S; Shuin T
    Oncol Rep; 2010 Jan; 23(1):11-6. PubMed ID: 19956859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patient-derived Hormone-naive Prostate Cancer Xenograft Models Reveal Growth Factor Receptor Bound Protein 10 as an Androgen Receptor-repressed Gene Driving the Development of Castration-resistant Prostate Cancer.
    Hao J; Ci X; Xue H; Wu R; Dong X; Choi SYC; He H; Wang Y; Zhang F; Qu S; Zhang F; Haegert AM; Gout PW; Zoubeidi A; Collins C; Gleave ME; Lin D; Wang Y
    Eur Urol; 2018 Jun; 73(6):949-960. PubMed ID: 29544736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of stress response protein Grp78 is associated with the development of castration-resistant prostate cancer.
    Pootrakul L; Datar RH; Shi SR; Cai J; Hawes D; Groshen SG; Lee AS; Cote RJ
    Clin Cancer Res; 2006 Oct; 12(20 Pt 1):5987-93. PubMed ID: 17062670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased PrLZ-mediated androgen receptor transactivation promotes prostate cancer growth at castration-resistant stage.
    Li L; Xie H; Liang L; Gao Y; Zhang D; Fang L; Lee SO; Luo J; Chen X; Wang X; Chang LS; Yeh S; Wang Y; He D; Chang C
    Carcinogenesis; 2013 Feb; 34(2):257-67. PubMed ID: 23104178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer.
    Kregel S; Kiriluk KJ; Rosen AM; Cai Y; Reyes EE; Otto KB; Tom W; Paner GP; Szmulewitz RZ; Vander Griend DJ
    PLoS One; 2013; 8(1):e53701. PubMed ID: 23326489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic profiling of androgen-independent prostate cancer cell lines reveals a role for protein S during the development of high grade and castration-resistant prostate cancer.
    Saraon P; Musrap N; Cretu D; Karagiannis GS; Batruch I; Smith C; Drabovich AP; Trudel D; van der Kwast T; Morrissey C; Jarvi KA; Diamandis EP
    J Biol Chem; 2012 Oct; 287(41):34019-31. PubMed ID: 22908226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatoma-derived growth factor: A survival-related protein in prostate oncogenesis and a potential target for vitamin K2.
    Shetty A; Dasari S; Banerjee S; Gheewala T; Zheng G; Chen A; Kajdacsy-Balla A; Bosland MC; Munirathinam G
    Urol Oncol; 2016 Nov; 34(11):483.e1-483.e8. PubMed ID: 27692835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiogenin mediates androgen-stimulated prostate cancer growth and enables castration resistance.
    Li S; Hu MG; Sun Y; Yoshioka N; Ibaragi S; Sheng J; Sun G; Kishimoto K; Hu GF
    Mol Cancer Res; 2013 Oct; 11(10):1203-14. PubMed ID: 23851444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Castration resistance of prostate cancer cells caused by castration-induced oxidative stress through Twist1 and androgen receptor overexpression.
    Shiota M; Yokomizo A; Tada Y; Inokuchi J; Kashiwagi E; Masubuchi D; Eto M; Uchiumi T; Naito S
    Oncogene; 2010 Jan; 29(2):237-50. PubMed ID: 19802001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Up-Regulation of LAT1 during Antiandrogen Therapy Contributes to Progression in Prostate Cancer Cells.
    Xu M; Sakamoto S; Matsushima J; Kimura T; Ueda T; Mizokami A; Kanai Y; Ichikawa T
    J Urol; 2016 May; 195(5):1588-1597. PubMed ID: 26682754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TACC2 is an androgen-responsive cell cycle regulator promoting androgen-mediated and castration-resistant growth of prostate cancer.
    Takayama K; Horie-Inoue K; Suzuki T; Urano T; Ikeda K; Fujimura T; Takahashi S; Homma Y; Ouchi Y; Inoue S
    Mol Endocrinol; 2012 May; 26(5):748-61. PubMed ID: 22456197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stanniocalcin 1 promotes cell proliferation via cyclin E1/cyclin‑dependent kinase 2 in human prostate carcinoma.
    Bai Y; Xiao Y; Dai Y; Chen X; Li D; Tan X; Zhang X
    Oncol Rep; 2017 Apr; 37(4):2465-2471. PubMed ID: 28350121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative genomic, transcriptomic, and RNAi analysis indicates a potential oncogenic role for FAM110B in castration-resistant prostate cancer.
    Vainio P; Wolf M; Edgren H; He T; Kohonen P; Mpindi JP; Smit F; Verhaegh G; Schalken J; Perälä M; Iljin K; Kallioniemi O
    Prostate; 2012 May; 72(7):789-802. PubMed ID: 21919029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crosstalk between epithelial-mesenchymal transition and castration resistance mediated by Twist1/AR signaling in prostate cancer.
    Shiota M; Itsumi M; Takeuchi A; Imada K; Yokomizo A; Kuruma H; Inokuchi J; Tatsugami K; Uchiumi T; Oda Y; Naito S
    Endocr Relat Cancer; 2015 Dec; 22(6):889-900. PubMed ID: 26311513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased nuclear factor I/B expression in prostate cancer correlates with AR expression.
    Nanda JS; Awadallah WN; Kohrt SE; Popovics P; Cates JMM; Mirosevich J; Clark PE; Giannico GA; Grabowska MM
    Prostate; 2020 Sep; 80(13):1058-1070. PubMed ID: 32692871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.