These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 19299080)

  • 1. Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings.
    Ercikdi B; Cihangir F; Kesimal A; Deveci H; Alp I
    J Hazard Mater; 2009 Sep; 168(2-3):848-56. PubMed ID: 19299080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings.
    Ercikdi B; Cihangir F; Kesimal A; Deveci H; Alp I
    J Hazard Mater; 2010 Jul; 179(1-3):940-6. PubMed ID: 20382473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill.
    Ercikdi B; Baki H; İzki M
    J Environ Manage; 2013 Jan; 115():5-13. PubMed ID: 23220652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of natural pozzolans as mineral admixture on the performance of cemented-paste backfill of sulphide-rich tailings.
    Ercikdi B; Cihangir F; Kesimal A; Deveci H; Alp I
    Waste Manag Res; 2010 May; 28(5):430-5. PubMed ID: 20142411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings.
    Yılmaz T; Ercikdi B; Deveci H
    J Environ Manage; 2018 Sep; 222():250-259. PubMed ID: 29859465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the neutralization performances of the industrial waste products (IWPs) in sulphide-rich environment of cemented paste backfill.
    Yılmaz T; Ercikdi B; Cihangir F
    J Environ Manage; 2020 Mar; 258():110037. PubMed ID: 31929072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of binders used in cemented paste tailings for underground and surface disposal practices.
    Tariq A; Yanful EK
    J Environ Manage; 2013 Dec; 131():138-49. PubMed ID: 24161803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic stability in arsenopyrite-rich cemented paste backfills: a leaching test-based assessment.
    Coussy S; Benzaazoua M; Blanc D; Moszkowicz P; Bussière B
    J Hazard Mater; 2011 Jan; 185(2-3):1467-76. PubMed ID: 21074944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hydration characteristics and utilization of slag obtained by the vitrification of MSWI fly ash.
    Lin KL; Wang KS; Tzeng BY; Lin CY
    Waste Manag; 2004; 24(2):199-205. PubMed ID: 14761759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of strength properties of cemented paste backfill by ultrasonic pulse velocity test.
    Yılmaz T; Ercikdi B; Karaman K; Külekçi G
    Ultrasonics; 2014 Jul; 54(5):1386-94. PubMed ID: 24602334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strength and ultrasonic properties of cemented paste backfill.
    Ercikdi B; Yılmaz T; Külekci G
    Ultrasonics; 2014 Jan; 54(1):195-204. PubMed ID: 23706262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of arsenic immobilization in synthetically prepared cemented paste backfill specimens.
    Coussy S; Benzaazoua M; Blanc D; Moszkowicz P; Bussière B
    J Environ Manage; 2012 Jan; 93(1):10-21. PubMed ID: 22054566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of disposed waste ash from landfills to replace Portland cement.
    Rukzon S; Chindaprasirt P
    Waste Manag Res; 2009 Sep; 27(6):588-94. PubMed ID: 19423600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-treatment of steel slag and oil shale waste in cemented paste backfill: Evaluation of fresh properties, microstructure, and heavy metals immobilization.
    Chang Y; Zhiyun Z; Dengfeng Z; Di Z; Liguo X
    J Environ Manage; 2024 Jan; 349():119406. PubMed ID: 37890302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithium Slag and Solid Waste-Based Binders for Cemented Lithium Mica Fine Tailings Backfill.
    Li J; Huang J; Hu Y; Zhu D
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites.
    Giergiczny Z; Król A
    J Hazard Mater; 2008 Dec; 160(2-3):247-55. PubMed ID: 18423859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithium slag and fly ash-based binder for cemented fine tailings backfill.
    He Y; Chen Q; Qi C; Zhang Q; Xiao C
    J Environ Manage; 2019 Oct; 248():109282. PubMed ID: 31374435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic evaluation of strength properties of cemented paste backfill: Effects of mineral admixture and curing temperature.
    Jiang H; Yi H; Yilmaz E; Liu S; Qiu J
    Ultrasonics; 2020 Jan; 100():105983. PubMed ID: 31479971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag--An overview.
    Song HW; Saraswathy V
    J Hazard Mater; 2006 Nov; 138(2):226-33. PubMed ID: 16930831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder.
    Zhong S; Ni K; Li J
    Waste Manag; 2012 Jul; 32(7):1468-72. PubMed ID: 22440404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.