These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 19300821)
1. Radical intermediates in chloroform reactions over triphenylphosphine-protected Au nanoparticles. Conte M; Wilson K; Chechik V Org Biomol Chem; 2009 Apr; 7(7):1361-7. PubMed ID: 19300821 [TBL] [Abstract][Full Text] [Related]
2. Gold nanoparticle-initiated free radical oxidations and halogen abstractions. Ionita P; Conte M; Gilbert BC; Chechik V Org Biomol Chem; 2007 Nov; 5(21):3504-9. PubMed ID: 17943210 [TBL] [Abstract][Full Text] [Related]
3. Spin trapping of Au-H intermediate in the alcohol oxidation by supported and unsupported gold catalysts. Conte M; Miyamura H; Kobayashi S; Chechik V J Am Chem Soc; 2009 May; 131(20):7189-96. PubMed ID: 19405535 [TBL] [Abstract][Full Text] [Related]
4. Enhanced acyl radical formation in the Au nanoparticle-catalysed aldehyde oxidation. Conte M; Miyamura H; Kobayashi S; Chechik V Chem Commun (Camb); 2010 Jan; 46(1):145-7. PubMed ID: 20024321 [TBL] [Abstract][Full Text] [Related]
5. Growth of different shape Au nanoparticles through an interfacial redox process using a conducting polymer. Mukherjee P; Nandi AK Langmuir; 2010 Feb; 26(4):2785-90. PubMed ID: 19891467 [TBL] [Abstract][Full Text] [Related]
6. Stoichiometric functionalization of gold nanoparticles in solution through a free radical polymerization approach. Krüger C; Agarwal S; Greiner A J Am Chem Soc; 2008 Mar; 130(9):2710-1. PubMed ID: 18254626 [TBL] [Abstract][Full Text] [Related]
7. Structure and activity of apoferritin-stabilized gold nanoparticles. Zhang L; Swift J; Butts CA; Yerubandi V; Dmochowski IJ J Inorg Biochem; 2007 Nov; 101(11-12):1719-29. PubMed ID: 17723241 [TBL] [Abstract][Full Text] [Related]
8. Colorimetric response to mercury-induced abstraction of triethylene glycol ligands from a gold nanoparticle surface. Hirayama T; Taki M; Kashiwagi Y; Nakamoto M; Kunishita A; Itoh S; Yamamoto Y Dalton Trans; 2008 Sep; (35):4705-7. PubMed ID: 18728875 [TBL] [Abstract][Full Text] [Related]
9. Phosphonioalkylthiosulfate zwitterions--new masked thiol ligands for the formation of cationic functionalised gold nanoparticles. Ju-Nam Y; Bricklebank N; Allen DW; Gardiner PH; Light ME; Hursthouse MB Org Biomol Chem; 2006 Dec; 4(23):4345-51. PubMed ID: 17102880 [TBL] [Abstract][Full Text] [Related]
10. Non-UV-induced radical reactions at the surface of TiO2 nanoparticles that may trigger toxic responses. Fenoglio I; Greco G; Livraghi S; Fubini B Chemistry; 2009; 15(18):4614-21. PubMed ID: 19291716 [TBL] [Abstract][Full Text] [Related]
11. Direct synthesis of hydrogen peroxide and benzyl alcohol oxidation using Au-Pd catalysts prepared by sol immobilization. Pritchard J; Kesavan L; Piccinini M; He Q; Tiruvalam R; Dimitratos N; Lopez-Sanchez JA; Carley AF; Edwards JK; Kiely CJ; Hutchings GJ Langmuir; 2010 Nov; 26(21):16568-77. PubMed ID: 20462255 [TBL] [Abstract][Full Text] [Related]
12. Surface characterization of immunosensor conjugated with gold nanoparticles based on cyclic voltammetry and X-ray photoelectron spectroscopy. Lai LJ; Yang YW; Lin YK; Huang LL; Hsieh YH Colloids Surf B Biointerfaces; 2009 Feb; 68(2):130-5. PubMed ID: 19019639 [TBL] [Abstract][Full Text] [Related]
16. Molecular mechanism of the photochemical generation of gold nanoparticles in ethylene glycol: support for the disproportionation mechanism. Eustis S; El-Sayed MA J Phys Chem B; 2006 Jul; 110(29):14014-9. PubMed ID: 16854091 [TBL] [Abstract][Full Text] [Related]