These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 19300986)

  • 1. Deriving angular displacement from optic flow: a fMRI study.
    Diekmann V; Jürgens R; Becker W
    Exp Brain Res; 2009 May; 195(1):101-16. PubMed ID: 19300986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinotopic and lateralized processing of spatial frequencies in human visual cortex during scene categorization.
    Musel B; Bordier C; Dojat M; Pichat C; Chokron S; Le Bas JF; Peyrin C
    J Cogn Neurosci; 2013 Aug; 25(8):1315-31. PubMed ID: 23574583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mental navigation in humans is processed in the anterior bank of the parieto-occipital sulcus.
    Ino T; Inoue Y; Kage M; Hirose S; Kimura T; Fukuyama H
    Neurosci Lett; 2002 Apr; 322(3):182-6. PubMed ID: 11897168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemispheric differences in frontal and parietal influences on human occipital cortex: direct confirmation with concurrent TMS-fMRI.
    Ruff CC; Blankenburg F; Bjoertomt O; Bestmann S; Weiskopf N; Driver J
    J Cogn Neurosci; 2009 Jun; 21(6):1146-61. PubMed ID: 18752395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The emergence of perceived position in the visual system.
    Fischer J; Spotswood N; Whitney D
    J Cogn Neurosci; 2011 Jan; 23(1):119-36. PubMed ID: 20044886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional neuroanatomy of mental rotation.
    Milivojevic B; Hamm JP; Corballis MC
    J Cogn Neurosci; 2009 May; 21(5):945-59. PubMed ID: 18702586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Executive control of spatial attention shifts in the auditory compared to the visual modality.
    Krumbholz K; Nobis EA; Weatheritt RJ; Fink GR
    Hum Brain Mapp; 2009 May; 30(5):1457-69. PubMed ID: 18649349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial attention improves reliability of fMRI retinotopic mapping signals in occipital and parietal cortex.
    Bressler DW; Silver MA
    Neuroimage; 2010 Nov; 53(2):526-33. PubMed ID: 20600961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Greater superior than inferior parietal lobule activation with increasing rotation angle during mental rotation: an fMRI study.
    Gogos A; Gavrilescu M; Davison S; Searle K; Adams J; Rossell SL; Bell R; Davis SR; Egan GF
    Neuropsychologia; 2010 Jan; 48(2):529-35. PubMed ID: 19850055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinotopic effects during spatial audio-visual integration.
    Meienbrock A; Naumer MJ; Doehrmann O; Singer W; Muckli L
    Neuropsychologia; 2007 Feb; 45(3):531-9. PubMed ID: 16797610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processing the spatial configuration of complex actions involves right posterior parietal cortex: An fMRI study with clinical implications.
    Weiss PH; Rahbari NN; Lux S; Pietrzyk U; Noth J; Fink GR
    Hum Brain Mapp; 2006 Dec; 27(12):1004-14. PubMed ID: 16639741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A common neural substrate for processing scenes and egomotion-compatible visual motion.
    Sulpizio V; Galati G; Fattori P; Galletti C; Pitzalis S
    Brain Struct Funct; 2020 Sep; 225(7):2091-2110. PubMed ID: 32647918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic changes in the mental rotation network revealed by pattern recognition analysis of fMRI data.
    Mourao-Miranda J; Ecker C; Sato JR; Brammer M
    J Cogn Neurosci; 2009 May; 21(5):890-904. PubMed ID: 18702583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mirror-image sensitivity and invariance in object and scene processing pathways.
    Dilks DD; Julian JB; Kubilius J; Spelke ES; Kanwisher N
    J Neurosci; 2011 Aug; 31(31):11305-12. PubMed ID: 21813690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. fMRI evidence for sensorimotor transformations in human cortex during smooth pursuit eye movements.
    Kimmig H; Ohlendorf S; Speck O; Sprenger A; Rutschmann RM; Haller S; Greenlee MW
    Neuropsychologia; 2008; 46(8):2203-13. PubMed ID: 18394660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neural basis for spatial relations.
    Amorapanth PX; Widick P; Chatterjee A
    J Cogn Neurosci; 2010 Aug; 22(8):1739-53. PubMed ID: 19642889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinotopic organization of human ventral visual cortex.
    Arcaro MJ; McMains SA; Singer BD; Kastner S
    J Neurosci; 2009 Aug; 29(34):10638-52. PubMed ID: 19710316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radial biases in the processing of motion and motion-defined contours by human visual cortex.
    Clifford CW; Mannion DJ; McDonald JS
    J Neurophysiol; 2009 Nov; 102(5):2974-81. PubMed ID: 19759326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural mechanisms of movement speed and tau as revealed by magnetoencephalography.
    Tan H-RM; Leuthold AC; Lee DN; Lynch JK; Georgopoulos AP
    Exp Brain Res; 2009 Jun; 195(4):541-52. PubMed ID: 19424687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A temporal frequency-dependent functional architecture in human V1 revealed by high-resolution fMRI.
    Sun P; Ueno K; Waggoner RA; Gardner JL; Tanaka K; Cheng K
    Nat Neurosci; 2007 Nov; 10(11):1404-6. PubMed ID: 17934459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.