These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 19300995)

  • 1. Potential of biofilm-based biofuel production.
    Wang ZW; Chen S
    Appl Microbiol Biotechnol; 2009 May; 83(1):1-18. PubMed ID: 19300995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational model for biofilm-based microbial fuel cells.
    Picioreanu C; Head IM; Katuri KP; van Loosdrecht MC; Scott K
    Water Res; 2007 Jul; 41(13):2921-40. PubMed ID: 17537478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in biofilm reactors for production of value-added products.
    Cheng KC; Demirci A; Catchmark JM
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):445-56. PubMed ID: 20437230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing symbiotic consortia for lignocellulosic biofuel production.
    Zuroff TR; Curtis WR
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1423-35. PubMed ID: 22278256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of anodic biofilm growth on bioelectricity production in single chambered mediatorless microbial fuel cell using mixed anaerobic consortia.
    Venkata Mohan S; Veer Raghavulu S; Sarma PN
    Biosens Bioelectron; 2008 Sep; 24(1):41-7. PubMed ID: 18440217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conduction-based modeling of the biofilm anode of a microbial fuel cell.
    Kato Marcus A; Torres CI; Rittmann BE
    Biotechnol Bioeng; 2007 Dec; 98(6):1171-82. PubMed ID: 17570714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial biofilms: a concept for industrial catalysis?
    Rosche B; Li XZ; Hauer B; Schmid A; Buehler K
    Trends Biotechnol; 2009 Nov; 27(11):636-43. PubMed ID: 19783314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life on the rocks.
    Gorbushina AA
    Environ Microbiol; 2007 Jul; 9(7):1613-31. PubMed ID: 17564597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consolidated bioprocessing of cellulosic biomass: an update.
    Lynd LR; van Zyl WH; McBride JE; Laser M
    Curr Opin Biotechnol; 2005 Oct; 16(5):577-83. PubMed ID: 16154338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production.
    Parisutham V; Kim TH; Lee SK
    Bioresour Technol; 2014 Jun; 161():431-40. PubMed ID: 24745899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology.
    Hasunuma T; Okazaki F; Okai N; Hara KY; Ishii J; Kondo A
    Bioresour Technol; 2013 May; 135():513-22. PubMed ID: 23195654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new approach for in situ cyclic voltammetry of a microbial fuel cell biofilm without using a potentiostat.
    Cheng KY; Cord-Ruwisch R; Ho G
    Bioelectrochemistry; 2009 Feb; 74(2):227-31. PubMed ID: 19019740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors.
    Tijhuis L; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1994 Aug; 44(5):595-608. PubMed ID: 18618795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of fed-batch fermentation and pH profiles on nisin production in suspended-cell and biofilm reactors.
    Pongtharangkul T; Demirci A
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):73-9. PubMed ID: 16733734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose.
    Xu Q; Singh A; Himmel ME
    Curr Opin Biotechnol; 2009 Jun; 20(3):364-71. PubMed ID: 19520566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant biotechnology for lignocellulosic biofuel production.
    Li Q; Song J; Peng S; Wang JP; Qu GZ; Sederoff RR; Chiang VL
    Plant Biotechnol J; 2014 Dec; 12(9):1174-92. PubMed ID: 25330253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignin modification improves fermentable sugar yields for biofuel production.
    Chen F; Dixon RA
    Nat Biotechnol; 2007 Jul; 25(7):759-61. PubMed ID: 17572667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system.
    Chung K; Okabe S
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production.
    Weng JK; Li X; Bonawitz ND; Chapple C
    Curr Opin Biotechnol; 2008 Apr; 19(2):166-72. PubMed ID: 18403196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells.
    Ren Z; Steinberg LM; Regan JM
    Water Sci Technol; 2008; 58(3):617-22. PubMed ID: 18725730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.