BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19301104)

  • 1. Microporous biodegradable polyurethane membranes for tissue engineering.
    Tsui YK; Gogolewski S
    J Mater Sci Mater Med; 2009 Aug; 20(8):1729-41. PubMed ID: 19301104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable porous polyurethane scaffolds for tissue repair and regeneration.
    Gorna K; Gogolewski S
    J Biomed Mater Res A; 2006 Oct; 79(1):128-38. PubMed ID: 16779769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of long-chain plant polyprenols as a means to modify the biological properties of new biodegradable polyurethane scaffolds for tissue engineering. A pilot study.
    Walinska K; Iwan A; Gorna K; Gogolewski S
    J Mater Sci Mater Med; 2008 Jan; 19(1):129-35. PubMed ID: 17587148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications.
    Guan J; Fujimoto KL; Sacks MS; Wagner WR
    Biomaterials; 2005 Jun; 26(18):3961-71. PubMed ID: 15626443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospinning of novel biodegradable poly(ester urethane)s and poly(ester urethane urea)s for soft tissue-engineering applications.
    Caracciolo PC; Thomas V; Vohra YK; Buffa F; Abraham GA
    J Mater Sci Mater Med; 2009 Oct; 20(10):2129-37. PubMed ID: 19434481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes.
    Gorna K; Gogolewski S
    J Biomed Mater Res A; 2003 Dec; 67(3):813-27. PubMed ID: 14613229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-property relations and cytotoxicity of isosorbide-based biodegradable polyurethane scaffolds for tissue repair and regeneration.
    Gogolewski S; Gorna K; Zaczynska E; Czarny A
    J Biomed Mater Res A; 2008 May; 85(2):456-65. PubMed ID: 17729256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering.
    Eglin D; Grad S; Gogolewski S; Alini M
    J Biomed Mater Res A; 2010 Jan; 92(1):393-408. PubMed ID: 19191318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique.
    Hou Q; Grijpma DW; Feijen J
    Biomaterials; 2003 May; 24(11):1937-47. PubMed ID: 12615484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalyst-free synthesis of high elongation degradable polyurethanes containing varying ratios of isosorbide and polycaprolactone: physical properties and biocompatibility.
    Park HS; Gong MS; Knowles JC
    J Mater Sci Mater Med; 2013 Feb; 24(2):281-94. PubMed ID: 23183961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique.
    Zhang C; Wen X; Vyavahare NR; Boland T
    Biomaterials; 2008 Oct; 29(28):3781-91. PubMed ID: 18602156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable elastomeric polyurethane membranes as chondrocyte carriers for cartilage repair.
    Chia SL; Gorna K; Gogolewski S; Alini M
    Tissue Eng; 2006 Jul; 12(7):1945-53. PubMed ID: 16889524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial extracellular matrix for biomedical applications: biocompatible and biodegradable poly (tetramethylene ether) glycol/poly (ε-caprolactone diol)-based polyurethanes.
    Shahrousvand M; Mir Mohamad Sadeghi G; Salimi A
    J Biomater Sci Polym Ed; 2016 Dec; 27(17):1712-1728. PubMed ID: 27589493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro effect on cancer cells: synthesis and preparation of polyurethane membranes for controlled delivery of curcumin.
    Nagarajan S; Reddy BS; Tsibouklis J
    J Biomed Mater Res A; 2011 Dec; 99(3):410-7. PubMed ID: 22021188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical and physical characterization of a novel poly(carbonate urea) urethane surface with protein crosslinker sites.
    Phaneuf MD; Quist WC; LoGerfo FW; Szycher M; Dempsey DJ; Bide MJ
    J Biomater Appl; 1997 Oct; 12(2):100-20. PubMed ID: 9399137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loading dependent swelling and release properties of novel biodegradable, elastic and environmental stimuli-sensitive polyurethanes.
    Zhang C; Zhao K; Hu T; Cui X; Brown N; Boland T
    J Control Release; 2008 Oct; 131(2):128-36. PubMed ID: 18703098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of preparation conditions for small-diameter artificial polyurethane vascular graft on microstructure and mechanical properties].
    Pan S; Yang S; Yi W; Zheng H; Tao J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Jan; 19(1):64-9. PubMed ID: 15704848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders.
    Gorna K; Gogolewski S
    J Biomed Mater Res; 2002 Jun; 60(4):592-606. PubMed ID: 11948518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First Report on a Solvent-Free Preparation of Polymer Inclusion Membranes with an Ionic Liquid.
    Vera R; Anticó E; Eguiazábal JI; Aranburu N; Fontàs C
    Molecules; 2019 May; 24(10):. PubMed ID: 31091678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.